Overview

- How to analyze fMRI data
 - General Linear Modeling (GLM)
 - Individual and group level
 - Multiple comparison correction
- A quick overview of using SPM to implement

individual and group level analysis

Individual and group level analysis

張葶葶 國立政治大學心理系 國立政治大學心腦學中心 台灣心智科學腦造影中心

Unferential Statistics

Parameter μ

(Population mean)

Hypothesis testing

- H₀ : condition 1 = condition 2
- H₁: condition1 ≠condition 2

Consider a very simple fMRI experiment

What does this mean in fMRI data?

Modelling the measured data

Why?	Make inferences about effects of interest (listening > rest is real?)
How?	1. Decompose data into effects (contrast map) and error (sample errors etc.)
2	2. Form statistic (t map) using estimates of effects and error
HAMAN	stimulus function
Wab it. f.	effects estimate

estimate

Each voxel is analyzed separately.

Each voxel presents a time-series data.

Voxel-wise time series analysis

General Linear Model

Cf. Boynton et al., 1996

Model specification: Single voxel regression model

Consider this example

Design Matrix

The 1st regressor is block The 2nd regressor is trial type

Task and Nuisance Regressors

There is one problem of this model.

BOLD responses have a delayed and dispersed form.

Solution: Convolution model

Convolution model of the BOLD response

Assumptions of GLM

- · Same design matrix throughout the brain
- Homoscedastic vs. heteroscedastic
- All voxels represent independent statistical test

In the SPM interface

The following images are created each time an analysis is performed

 beta.img: images of estimated regression coefficients (parameter estimate).

• con.img: contrast values between two beta images.

• spmT.img: T-value of the contrast image.

Single subject results

Not as pretty as the data you often seen in fMRI papers.

Typically you will need ~20 subjects to obtain meaningful results.

Group Level Analysis

Fixed Effects

- · Fixed-effects Model
 - Assumes that effect is constant ("fixed") in the population
 - Uses data from all subjects to construct statistical test
 - Allows inference to subject sample

Random Effects

· Random-effects Model

- Assumes that effect varies across the population
- Accounts for inter-subject variance in analyses
- Allows inferences to population from which subjects are drawn
- Especially important for group comparisons

Subject 1

For voxel v in the brain

Effect size, c ~ 4

Subject 3

For voxel v in the brain

Effect size, c ~ 2

Subject 12

For voxel v in the brain

Effect size, c ~ 4

Random Effects Analysis

For group of N=12 subjects effect sizes are

c= [3, 4, 2, 1, 1, 2, 3, 3, 3, 2, 4, 4]

Group effect (mean), m=2.67 Between subject variability (stand dev), s_b =1.07

This is called a Random Effects Analysis (RFX) because we are comparing the group effect to the between-subject variability.

Subject 1

For voxel v in the brain

Within subject variability, $$s_{\rm w}$\sim}0.9$

Subject 3

For voxel v in the brain

Within subject variability, $s_w \sim 1.5$

Subject 12

For voxel v in the brain

Within subject variability, $s_w \sim 1.1$

Fixed Effects Analysis

Time series are effectively concatenated - as though we had one subject with N=50x12=600 scans.

 $s_w = [0.9, 1.2, 1.5, 0.5, 0.4, 0.7, 0.8, 2.1, 1.8, 0.8, 0.7, 1.1]$

Mean effect, m=2.67 Average within subject variability (stand dev), $s_w = 1.04$

Fixed-effects Analysis in SPM

Multisubject 1st level : 5 subjects x 1 run each Fixed-effects

- each subjects entered as separate sessions
- create contrast across all subjects
- c = [1-11-11-11-11-1]
- perform one sample t-test

Random-effects Analysis in SPM

Random-effects

- 1st level design per subject
 generate contrast image per
- subject (con.*img) • images MUST have same
- dimensions & voxel sizes
- con*.img for each subject entered in 2nd level analysis
- perform stats test at 2nd level

2nd Level Analysis

What statistics does SPM do?

Specify 2nd level: One-sample t-test Simplest example.

Statistical analysis: Design	
1	
	Witcom/Witgenicar_3021aug
	IPLICON INTERNATION, MILLING
	30Romlanity/of ton_0000 ang
	XDirectorelysticities (XX) ing
	CEromianalysistics_0000arg
	Filtram/FM_spricer_000.ing
	httpom/analysintics_0000 ang
	#Ellernianajetr/tem_000.ing
	#Teamienely#fear_Hitting
	MRoombalystron_M34ag
	Phoneselyster, Hiteg
	Silfeomianajointice_600.imp
	/Tileamianalysinfeam, Hitting
poanders	
	$(pry \rightarrow \beta \mbox{-stanipely specific})$
pa swith othough	-
Design description	
Design 1 One sample Most	
Global calculation : cont Grand mean scaling : the grand Mean scaling?	
Glubal exemplication : <no photomormalization=""></no>	
Parameters : 1 concilion, +0 covarials, +0 block, +0 nuites 1 block instance 1 discusses of baselium	08
the second second second second	

Other tests

12/9/2015

BE View Insert face Window Help Colours Oran	e SPR-Host Results-Ry Tacks	
storial design specification Design One-sample Heat Scans <-X Covanates - Covanates - Covanates - Vestor Name Interactions Canterino	⊒ Spoci≬Test	
Masking Global nakrulation		-
Omi Gobal nomalisation Directory <-X	-30.277778 -16.277778 -13.277778 -3.277778 -3.272222 -3.722222 -3.722222 -3.5277778 -3.527778 -3.5277778 -3.52777778 -3.5277778 -3.52777778 -3.52777778 -3.52777778 -3.5277777778 -3.52777777778 -3.52777777777777777777777777777777777777	1
		2
		1
	Sam Load	125-41

One sample t-test

with a covariate added. Test correlations between task

specific activations and some other measure (age, performance, etc.).

Vectors added here.

Full factorial

Statistical thresholding

Statistical thresholding

- We need to choose a threshold that balances the benefits of finding effects with the cost of making false alarms.
- α is our statistical threshold: it measures our chance of Type I error.
 - A 5% <u>alpha level</u> (Z>1.64) means only 1/20 chance of false alarm (p < 0.05).
 - A 1% <u>alpha level</u> (Z>2.3) means only 1/100 chance of false alarm (p< 0.01).

The Problem of Multiple Comparisons

P < 0.05

P < 0.01

P < 0.001

Options for Multiple Comparisons

- Statistical Correction
 - Family-Wise Error Rate (FEW)
 - False Discovery Rate (FDR)
 - Random Field Theory (RFT)
- Cluster Analyses
- ROI Approaches

Bonferroni Correction

- Very severe correction
 - Results in very strict significance values
 - Typical brain may have up to ~30,000 functional voxels
 Alpha .1, Corrected alpha ~ 0.000003
- Benefits
- Controls for FWE.
- Problem
 - Very conservative = very little chance of detecting real effects

False Discovery Rate

- Controls the expected proportion of false positive values among suprathreshold values
 - Genovese, Lazar, and Nichols (2002, NeuroImage)
- Algorithm
 - p1 <= p2 <= p3......<= pV
 - Pi <= q/V
 - E.g. q=.1 means control voxel does not exceed 10 out of 100 voxels
- Advantage
 - Less stringent

Small volume Comparison

- Only test a small proportion of voxels.
- Should only be done before analyses, based on strong a priori hypotheses.

Random field theory

- · Estimate the number of independent test
- Algorithm

 R = x * y * z /V³, v = smooth voxel size
- Recommendation: Use a combination of *voxel* and *cluster* correction methods

Cluster Analyses

- Adopting a minimum size of a cluster of active voxels to be labeled as significant
- Assumptions
 - Assumption I: Areas of true fMRI activity will typically extend over multiple voxels
 - Assumption II: The probability of observing an activation of a given voxel extent can be calculated

Two approaches of fMRI data analysis

A. Whole volume statistical approach

- Requires no prior hypotheses about areas involved
- Includes entire brain
- Can lose spatial resolution with intersubject averaging
- Can produce meaningless "laundry lists of areas" that are difficult to interpret
- Depends highly on statistics and threshold selected

B. Region of interest (ROI) approach

- Gives you more statistical power because you do not have to correct for the number of comparisons
- Hypothesis-driven
- ROI is not smeared due to intersubject averaging
- Easy to analyze and interpret
- Neglects other areas which may play a fundamental role

Anatomical ROI

Fuctional ROI

- ROIs that were activated by a particular stimulus
- How to select
 - Functional localizer
 - Previous studies
 - meta-analysis
- Problem
 - Selection bias

Alternatives to voxelwise analysis

- Conventional fMRI statistics compute one statistical comparison per voxel.
 - Advantage: can discover effects anywhere in brain.
 - Disadvantage: low statistical power due to multiple comparisons.
- Small Volume Comparison: Only test a small proportion of voxels.
- Region of Interest: Pool data across anatomical region for single statistical test.

Example: how many comparisons on this slice?

•Voxelwise: 1600 •SVC: 57 •ROI: 1

Group level analysis

- Many different ways of conducting group-level
 analysis
- · Choice depends primarily on:
 - 1. Initial study design.
 - 2. Research questions
 - 3. Parsimonious models vs. more complex ones.