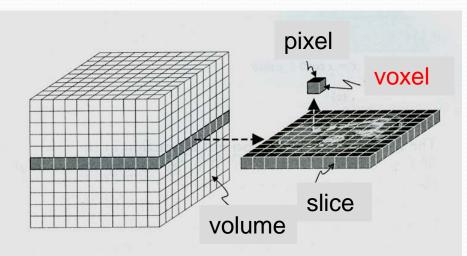
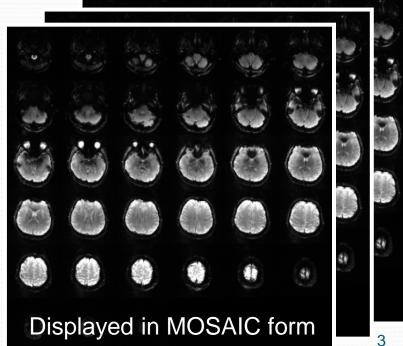


科技部人文司: 心智科學大型研究設備建置及公同使用服務計畫


影像資料前處理 Image preprocessing


蔡尚岳 政治大學 應用物理研究所

Images as Matrix

- 單張影像為有厚度的二為切面(片) [X, Y]
- ▶ 一組頭部影像:多個切面以3d 矩陣儲存 [X, Y, Z]
- 一組fMRI影像:多組於不同時間取得的頭部影像,以4D矩 陣儲存 [X, Y, Z, time]

For fMRI, we will have ...

- 高解析度結構影像
 - T1 or MPRAGE 以3D矩陣儲存
 - ex: [176 256 256] in [X Y Z]
 - [Left-Right Anterior-Posterior Superior-Inferior]
- fMRI影像資料
 - EPI 影相以4D矩陣儲存
 - ex: [64 64 40 300] for [X Y Z T] if we use 300 measurements and 40 slices

Universal data format

- 影像需要共通的儲存格式
 - Like the "JPG" "BMP" files for digital images
 - These kinds of files can be transferred in internet, computers, digital cameras
- 醫學影像通用格式
 - Dicom 格式, ".ima" or ".dcm"
 - MRI系統自動產生,實驗做完後拿到的影像格式
- Neuroimaging 通用格式
 - NIFTI 格式,".nii" or ".img"+".hdr"
 - 各種分析軟體均支援此格式,例如:AFNI、freesurfer、FSL、 SPM、Brainvoyager 等等....
 - 基本上就是儲存fMRI影像的四維矩陣

Two NIFTI Data types

- SPM use analyze 7.5 format
 - Two files for one 3D image matrix : image part in ".img" and header in ".hdr"
 - MPRAGE: 1 img file and 1 hdr file
 - fMRI with 300 measurements: 300 img files and 300 hdr files
- Nii format is also supported by SPM
 - Image matrix (3D, 4D or more) are directly saved in the "nii" file including header and image
 - MPRAGE: 1 nii file
 - fMRI with 300 measurements: 1 nii file
 - Can be given in compressed form ".nii.gz"

Header is needed

- 紀錄每組影像資料的相關資訊
 - Coordinate information
 - History: all process and the transformation done on the data set

ANIFTI Header Information				
File Tab Edit				
Dimensions Reorient Image Intensity Statistics [fMRI] Optional				
Header Type ni1: NIfTI separate file (.hdr+.img)				
Dimension	Length	SpacingUnit		
I Space	64 🕂	4.0000		
J Space	64 🕂	4.0000 📑 Millimeter 💌		
K Space	31 🗦	4.0000 📑		
Time	1	0.0000 🚔 Second 💌		
5th Dim	1 📑	0.0000		
6th Dim	1	0.0000		
7th Dim	1 🗦	0.0000 🛋 Offset 0 🖃		
Data 16-bi	t int S*	▼ little-endian: Intel ▼		
ImageData (bytes)= 253952				

Header information in other tool

File:0010-00001-000	001-01.img			
Dimensions:64 x 64 x 31				
Datatype: int16				
Intensity:Y = 1 X				
3T 2D EP TR=2000ms/TE=30ms/FA=90deg				
Vox size:-4 x 4 x 4 Origin:32.8 34.7 6.77 Dir Cos: 1.000 0.000 0.000 0.000 0.991 -0.137 0.000 0.137 0.991				
Full Volume • World Space • Auto Window •	Hide Crosshairs bilin interp + Add Blobs			

Header information in SPM

Left and Right handed coordinate systems

- Coordinate: NIfTI format files are stored in either a left- or righthanded system Indicated in the header
- Right hand coordinate used in talairach system
 - X increase from left to right
 - Y increase from posterior to anterior
 - Z increase from inferior to superior
- Left hand coordinate used in Analyze format and MNI space
- Mapping between them sometimes requires a flip

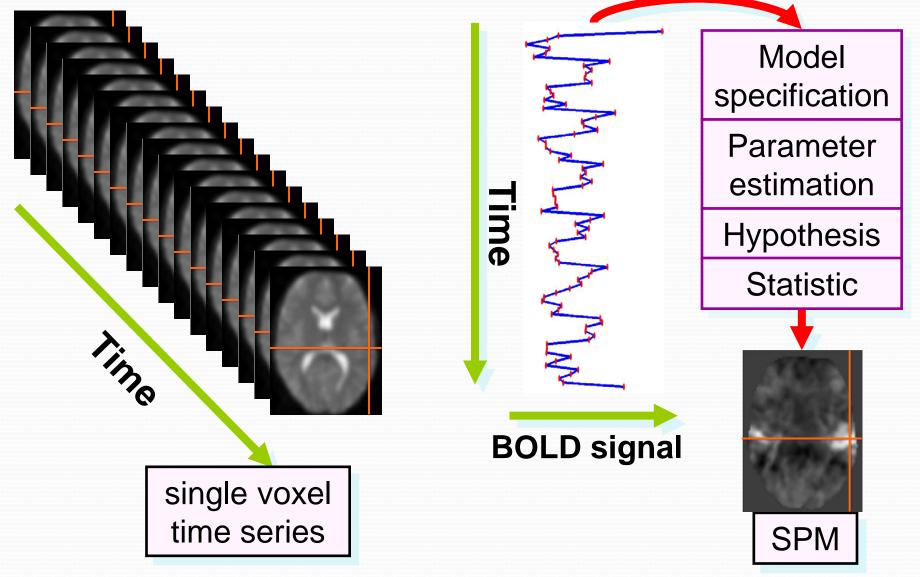


Image-based spatial process

- fMRI preprocess usually belongs to this type
 - Realignment
 - coregistration
 - Normalization and Segmentation
- Change the intensity or morphology of images
- Apply on images, time point by time point

Voxel-based time series (course) analysis

Statistics or whatever **Pre-processing Overview** fMRI time-series Template Anatomical MRI Smoothed Estimate Spatial Norm Motion Correct & slice timing Smooth Coregister Spatially normalised m_{11} m_{12} m_{13} m_{14} m_{22} m_{23} m_{24} m_{21} m_{31} m_{32} *m*₃₃ m_{34} 0 0 0 1 Deformation

SPM functions

💋 SPM8 (Knight): Menu 🗖 🗖 💌					
Spatial pre-processing					
Realign (E	iming Smooth				
Coregister (👻 Normalise	e (E ▼ Segment				
Model specification, review and estimation					
Specify 1st-level	Review				
Specify 2nd-level	Estimate				
Inference Results					
Dynamic Causal Modelling					
SPM for functional MRI					
Display Check Reg	Render				
Toolbox: PPIs	ImCalc DICOM Import				
Help Utils •	Batch Quit				
Copyright (c) 1991,1994-2011					

files

EPI

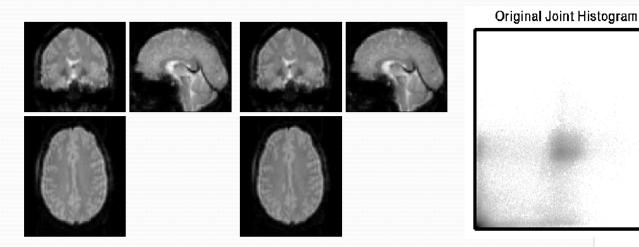
EPI,T1

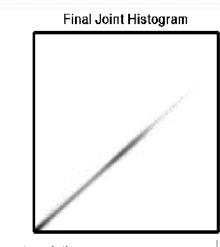
EPI,T1 template

EPI

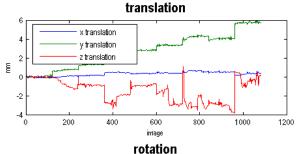
- DICOM Import
- Realign
- Slice timing
- Coregister
 - Normalise and Segment
- { Smooth
 - Display and Check Reg

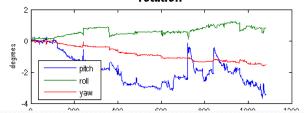
Spatial transformation


 All voxels in the images can be accessed by [X Y Z] indexes given the origin and orientation (rotational matrix)

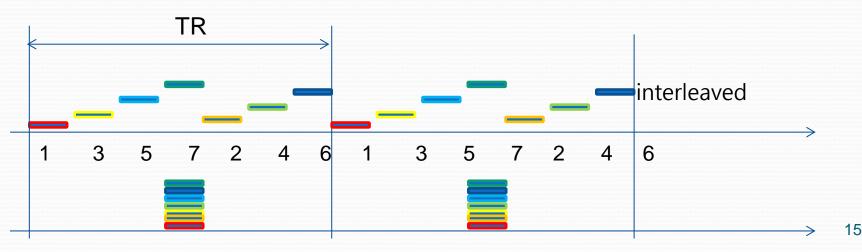

Two procedures to do transformation between A and B

- Decide the source and reference and choose the proper functions and associate algorithms
 - Register the source (A) to reference (B) image
- Estimate transformation matrix between A and B, then apply transformation matrix on A
 - SPM will apply transformation matrix on A voxel by voxel and update the coordinate for the header of A
 - You will get a new sets of images after transformation denoted by specified file pre-fix "xx" like r-A

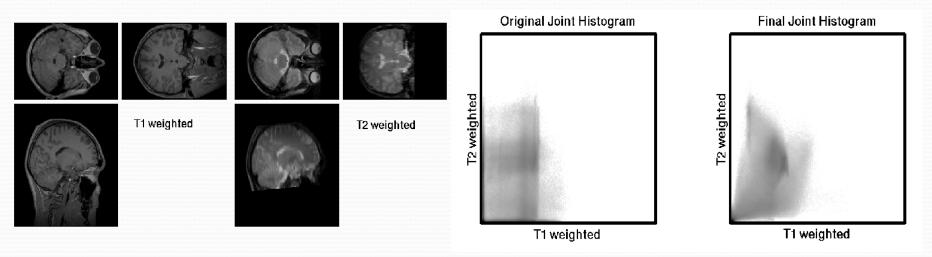



Realignment- motion correction

- Correct the motion during EPI scans
 - 6 parameters rigid body transformation
 - Intra-modal registration by minimising meansquared difference
- All image are aligned to one reference image
 - Can be the first one, middle one or averaged one by doing the process iteratively

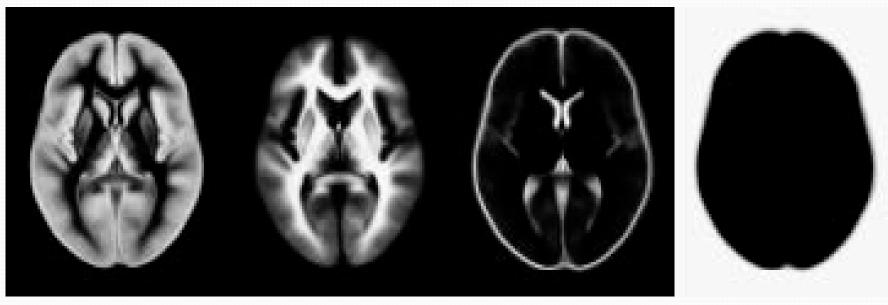


Slice timing correction


- Slices are not acquired simultaneously
- Align the timing of all slices to a referenced time by interpolation
 - Number of slice (ex:33)
 - TR (ex:2 seconds)
 - TA = TR-(TR/number of slices) (ex:2-2/33)
 - Slice order: mostly interleaved (ex:[1:2:33 2:2:33] for odd or [2:2:40 1:2:40] for even)
 - Reference slice (ex 33 which is the middle one)

Coregistration – T1 and EPI

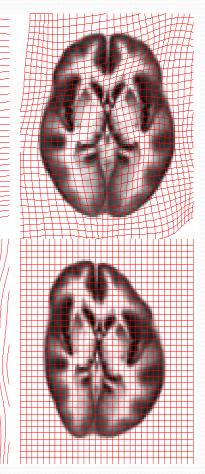
- Match images from same subject but different types
 - 12 parameters affine transformation
 - Inter model registration by maximizing mutual information
 - Achieve more precise spatial normalization of fMRI images using anatomical image
- Estimation: Averaged EPI after realignment to T1 MPRAGE
- Reslice: apply to EPI after slice timing correction


Spatial Normalisation

- Brains of different subjects vary in shape and size
- All into a common anatomical space (Template)
 - Examine activation regions across subjects in group analysis
 - Report findings in a common anatomical space
- In SPM, alignment is achieved by matching grey matter with grey matter and white matter with white matter
 - Segmentation is needed
 - Images with good GM/WM contrast gives better results

Segmentation

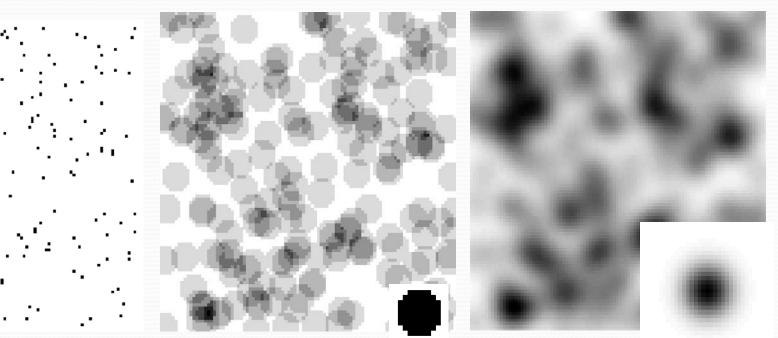
- Tissue probability maps (TPMs)
- SPM8 estimates a spatial transformation that can be used for spatially normalising images



ICBM Tissue Probabilistic Atlases. These tissue probability maps are kindly provided by the **International Consortium for Brain Mapping**, John C. Mazziotta and Arthur W. Toga.

Deforming the Tissue Probability Maps

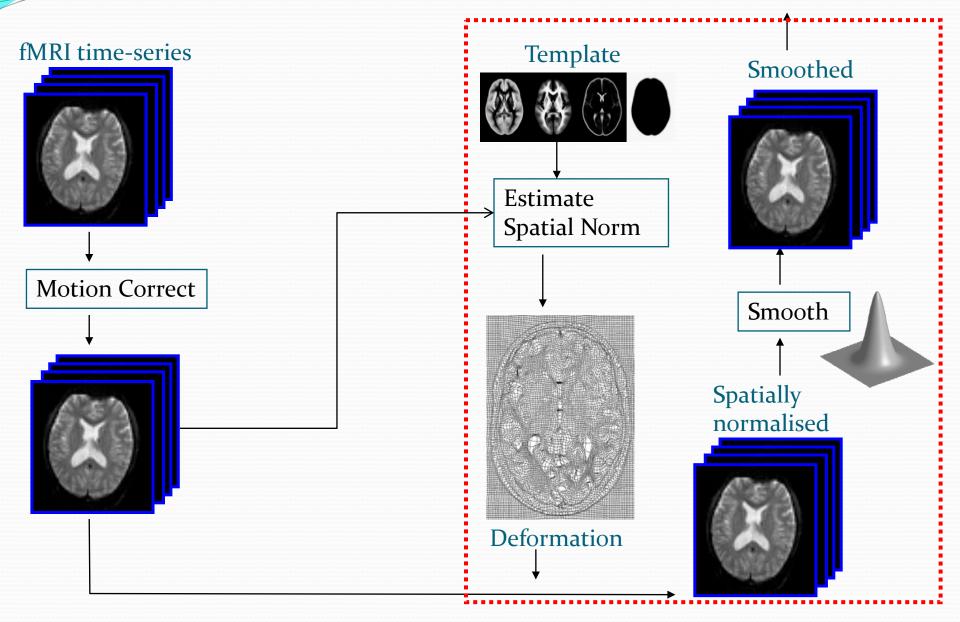
- Tissue probability images are deformed so that they can be overlaid on top of the image to segment
- Transformation function will be generated denoted by "SN"
- Normalization can be done reversely using the transformation function denoted by "invSN"

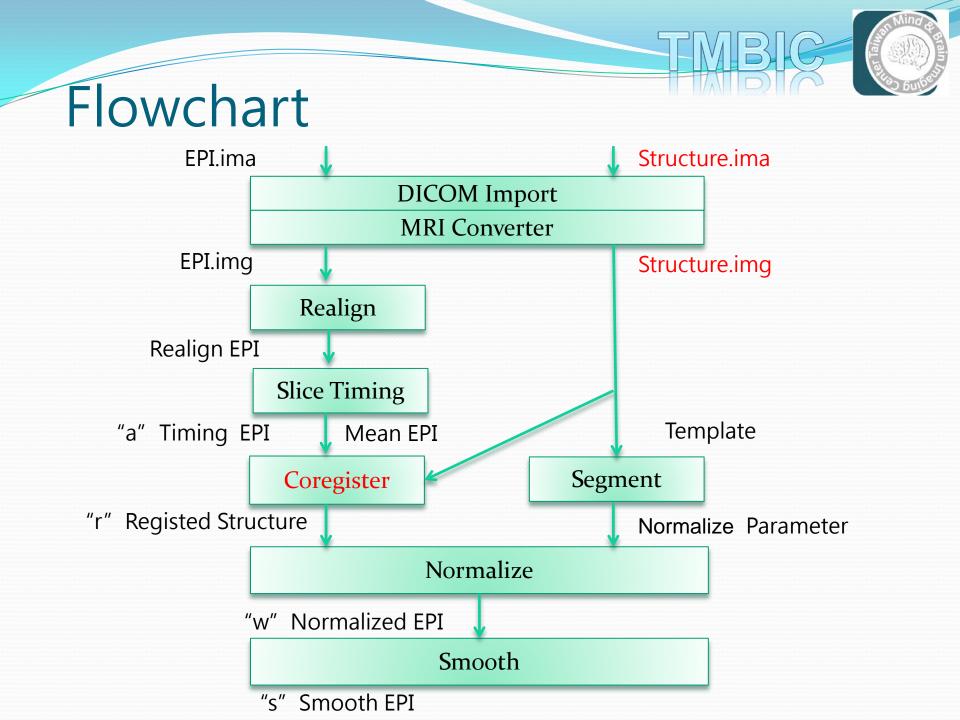

Smooth

- Blurring the images by a kernel
- Increase SNR but spatial resolution
- Effective voxel size

Before convolution

Convolved with a circle


Convolved with a Gaussian



Statistics or **Pre-processing Overview** whatever fMRI time-series Template Anatomical MRI Smoothed Estimate Spatial Norm **Motion Correct** Smooth Coregister Spatially normalised m_{11} m_{12} m_{13} m_{14} *m*₂₂ *m*₂₃ m_{24} m_{21} m_{31} *m*₃₂ *m*₃₃ m_{34} 1 0 0 0 Deformation

Alternative pipeline

Statistics or whatever

