fMRI在數學認知研究的應用

張葶葶 國立政治大學心理系

Why study mathematical cognition?

- Quantitative reasoning in everyday life
- Early math skills strong predictor of educational achievement (Duncan et al., 2007)
- Some children & adults present with 'Developmental Dyscalculia'

中小學生補習數學者佔補習人口比例

(張雅俐, 2011; 林宜慧, 2007; 許綺婷, 2001; 徐政業, 2008)

Three interrelated questions

- How is mental arithmetic stored and processed in the brain?
- How does the neural network of mental arithmetic processing develop with learning and experience?
- How does atypical developing arithmetic skills represented in the brain?

functional Magnetic Resonance Imaging (fMRI)

Resting

6-2=4 "Correct or incorrect?"

3+2=6

5+4=9

7-4=2 "Is there a 5?"

4+3=8

4 & 3 @ 5

3 \$ 7 # 1

8 % 6 & 2

2 # 5 @ 3

Source: Frackowiak et al. (2004)

Creating 3D volumes from 2D EPI

Slices can be either collected sequentially or interleaved order.

Slice timing

- Consider 3D volumes collected as ascending axial slices
 - For each volume, we see inferior slices before superior slices

Statistics assume all slices are seen simultaneously...

Head movement

realignment

Registration of the fMRI scans (across time)

Normalization

 Normalization: align images from different people (align everyone to a template image)

Spatial Smoothing

Before smoothing

After smoothing

Spatial Smoothing

$$5 + 3 = ?$$

14 + 25 = ?

45 + 78 = ?

2874 + 3527 = ?

Arithmetic strategy

- Retrieval
 - Directly recollect answer in one step
- Procedural calculation
 - Calculate answer using explicit algorithm

Canonical Brain Areas Involved in Arithmetic Problem Solving

Maps are based on meta-analysis of 44 studies of arithmetic in neurosynth (Yarkoni et al. 2011).

Posterior Parietal Cortex (PPC)

Menon (2010), Dehaene et al., (2003)

Distinct PPC profile

Arabic Numeral:

3 + 4 - 2 = 5

"Is this correct?"

Roman Numeral:

"Is this correct?"

$$III + IV - II = V$$

Wu, Chang et al. (2009)

Activation Difference Between Arabic and Roman Numerals

Are the neural correlates of mental arithmetic modulated by mathematical competence?

AG activation Correlates with Accuracy

- Screened a large sample of adults (138)
- Selected individuals who did not differ in IQ but varied in their mathematical competence
- fMRI study
 - Multiplication verification

$$4 \times 6 = 24$$

Control Task

$$3 = 3 = 3$$

Which brain regions activated during multiplication correlated with mathematical competence?

Relationship between AG activation and individual difference in math skill

Grabner, Ansari et al. (2007)

Mental arithmetics predicts high school math

- Participants
 - 33 high school students (mean age :17 yrs)
- Math skill assessment
 - PSAT

Price et al. (2013)

PSAT positive correlates with AG/SMG and negatively correlates with IPS

Price et al. (2013)

Are the neural correlates of mental arithmetic modulated by strategy choice?

Strategy Variability Evidence from Brain Imaging

Grabner, Ansari et al. (2009)

Learning by algorithm or learning by drill?

Procedure:

[(right number – left number) + 1] + right number
 [(right number + left

number) – 10] + right number

Trial Begins В Day 1 = 500msDay 2 = 250 ms4 # 12 = 17Day 3 = 125 ms**Next Problem** Day 4 = 62msDay 5 = 31 msDRILL CORRECT INCORRECT ###### 250ms 4 # 12 = Input Solution: Time Limits Day 1 = 3000 msDay 2 = 2500 msDay 3 = 2000 msDay 4 = 1500 msDay 5 = 1500 ms

Delazer et al. (2005)

Delazer et al. (2005)

Training effect: trained vs. untrained untrained vs. trained

Strategy effect: drill vs. algorithm algorithm vs. drill

Does the brain activate differently across basic arithmetic operations?

Problem solving strategies varies across arithmetic problems

Campbell & Xue, 2001

Functional Dissociation Between Basic Arithmetic Operations

- Participants
 - 20 healthy adults (age 18-30)
- Tasks

Rosenberg-Lee, Chang et al. (2011)

How specific do we learn?

How does the neural network of mathematical information processing develop with learning and experience?

Development of mental arithmetic

Mental Arithmetic

Rivera et al. (2005)

Development of mental arithmetic across adolescence

Participants

- 25 children (age 7-10)
- 19 adolescents (age 13-17)
- 26 adults (age 19-22)

Subtraction

Control

Chang et al. (in preparation)

(A) Linear increases in left IPS

(B) Linear increases in right IPS

3 20

F-score

(A) Transient engagement in SMG

(B) Brain-behavior relations

p(PF) = 60%

How about the development of different basic arithmetic operation?

Arithmetic problem solving strategies converge across addition and subtraction

Campbell & Xue, 2001; Barrouillet, Mignon, & Thevenot, 2008

Experimental Design

- Cross-sectional fMRI
 - 28 Children (7-9 yrs)
 - 28 Adults (18-22 yrs)
- Block design

Chang et al. (under review)

Multivariate Representational Similarity (MRS)

MRS - whole brain

Adults > Children

Chang et al. (under review)

Developmental effect in MRS

What about atypical developing?

Atypical developing?

Developmental Dyscalculia (DD)

- DD is a specific learning disability affecting the acquisition of school-level mathematical abilities in the context of otherwise normal academic achievement, with prevalence rate of 3-6% (Price et al., 2007).
- DD children show persistent deficits in mathematical skill.
 - longitudinal study of 140 11-yr old children with DD (Shalev et al., 2005)
 - After 3 years, 95% of the group still meet DD criteria
 - After 6 years,
 - 51% could not solvle 7 X 8 (vs. 17% of controls)
 - 71% could not solve 37 X 24 (vs. 27%)
 - 49% could not solve 45 X 3 (vs. 15%)
 - 63% could not solve 5/9 + 2/9 (vs. 17%)

Children with low math skill

- fMRI study of complex and simple addition and subtraction problem
- 10-12 year old children

DeSmedt et al. (2011)

Ashkenazi et al. (2012)

Summary

- PPC is consistently implicated in mental arithmetics.
 - PPC has distinct function in mathematical cognition.
 - PPC is modulated by mathematical competence and strategy use.
- Development profile of PPC
 - developmental shift from PFC to PPC in mathematical cognition
 - Heterogeneous developmental trajectory of PPC
 - Neural representations of PPC converge between distinct problem types.
- Children with developmental dyscalculia
 - Show persistent deficit in mathematical skill
 - fail to generate distinct representation between different problem types.