From this morning, you should have learned ...

- What is BOLD signal?

- How should we design an fMRI experiment?

In this lecture, you will learn ...

- How to analyze fMRI data (the standard way): General Linear
Modeling (GLM). What is its theoretical basis? Why is it useful?

After this lecture, you will learn ...

- How to implement a GLM in a standard analysis software (SPM)



General linear model: basic

e Introducing General Linear Model (GLM): Start with an example

e Properties of the BOLD signal

- Linear Time-Invariant (LTI) system

- The hemodynamic response function

e (Briefly) Evaluating efficiency of a design

e (Briefly) Going back to the example



Univariate analysis

- Each voxel in the brain is analyzed separately

- Each voxel presents a time-series data
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Time-series data

- Suppose you have the following experiment
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Time-series data

- This is the data you get (from a single voxel)
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Time-series data

BOLD signal (arbitrary units)
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- When you compare prediction (based on your design) and
data, you realize that there is somewhat a match, but not close
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Time-series data

BOLD signal (arbitrary units)

- What about this one? Which aspect of the comparison is the

same, which aspect might be different?
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Observation

- BOLD signals are noisy

- BOLD signals are delayed responses to the events of interest
(e.g. the presentation of face)

Question

How do we set up the analysis? How do we model the BOLD
response’?



General Linear Model

BOLD signal Design matrix

) @ X + noise

v
Parameter estimate: this is what we are interested in



Apply the same model to all voxels




General linear model

Y =XB+¢,e~N(0,0°%)

/N

m —

BOLD times series Design matrix  Parameter vector

(BOLD: Blood Oxygenation Level Dependent)



Key

- Understanding the relation between BOLD signal and neural activity
- Understanding the properties of the BOLD signal

- Understanding the characteristics of noise in the BOLD signal



The BOLD signal

- Observed BOLD signal (example)

BOLD magnitude
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- BOLD signal did not look exactly like the predicted
neural activity (in red)



The BOLD signal

- BOLD signal as a transformation of neural activity

fx)
X > BOLD

(neural activity)

BOLD magnitude
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The BOLD signal

- BOLD signal as a transformation of neural activity

fx)
X > BOLD

(neural activity)

- Identifying the properties of the transformation function is critical

- The first thing to check is if BOLD is a linear transform of neural
activity



Around the mid 1990s ...

- Boynton et al. (1996, J Neurosci.) tested the linear transform model
in primary visual cortex (V1)

Noise
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fMRI Linear Transform

Important: It was only assumed that the transformation
from neural response to fMRI response is linear.



Properties of a Linear Time-Invariant (LTI) system

- Homogeneity

Scalar Rule

% Orniginal input Qutput
- o
o =
2 =
N
— tim «
= a S V time
3
0 w

Original input  x 2 Output x 2
3
4
3
@ =
3 £
g
- time E fime
2 £
N (v

When the input magnitude is doubled, the output response
is also doubled



Properties of a Linear Time-Invariant (LTI) system

- Additivity
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Properties of a Linear Time-Invariant (LTI) system

- Shift invariance

. Original input > Ourput
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Why is LTl system important?



If LTI holds,

Convolution

(h=£)(t)= [h(z)f(t - T)dT.

A

v

The output of a LTI system is simply the convolution of the input
and the impulse response function, h(t)



If LTI holds,

Convolution

(h=£)(t)= [h(z)f(t - T)dT.

A

v

The output of a LTI system is simply the convolution of the input
and the impulse response function, h(t)



Visualizing convolution (h=f)(t)= [h(z)f(t - T)dz.

- Suppose h(t) looks like

A\

- There is an impulse (an input) at time t

t

Time

- The impulse response to this input is obtained by convolving
the impulse with the impulse response function h(t)
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Visualizing convolution (h=f)(t)= [h(z)f(t - T)dz.

- Input time series

Time

- OQutput (response) time series (the sum of the 3 time series)
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Why is LTl system important?

- The output of a LTI system is simply the convolution of the input
and the impulse response function, h(t)

- All we need to know is h(t)



Boynton et al. (1996)

- flickering checkerboard task

- 4 pulse durations (3, 6, 12, 24 s)

- 4 stimulus contrasts (0, 0.25, 0.5, 1)
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Boynton et al. (1996)

- Results

Look how response varies as a function of contrast
and duration; Could you tell if LTI is hold?
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Boynton et al. (1996)

- LTI assumption holds in most cases
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Modeling h(t)

We need to have a good estimate of h(t)



Modeling h(t)

We need to have a good estimate of h(t)

Use a double-gamma function to model h(t)

1
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Modeling h(t)

We need to have a good estimate of h(t)

Canonical HRF (double-gamma function)

PSU



Another example: More complicated design
Tom et al. (2007, Science)



Tom et al. (2007)

- Question: Where and how are monetary gains and losses
represented in the brain when people are making risky

decisions?

- Experimental design:
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Subjects indicate whether s/he wanted to play a
50/50 gamble on either winning Sx or losing Sy in
every trial.



Tom et al. (2007)

- Construct a General Linear Model (GLM) to analyze data

Y(t) - /50 (t) + ﬁlxl (t) + [)’GainxGain (t) + ﬁLossXLoss (t) + [J’distxdist (t)

/ ] Euclidian distance

Indicator variable The amount of gain The amount of loss

By having this model, we can look for brain areas correlated
with gains, losses, or both.



Tom et al. (2007)
- Design
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Tom et al. (2007)

- Construct General Linear Model (GLM) to analyze data

Y(t) - /50 (t) + ﬁlxl (t) + [)’GainxGain (t) + ﬁLossXLoss (t) + [J’distxdist (t)

/ / Euclidian distance

Indicator variable The amount of gain The amount of loss

Important:
This is the GLM that analyzes data of a single run of a single subject



Tom et al. (2007)
- Construct General Linear Model (GLM) to analyze data

Y(t) - ﬁo (t) + ﬁlxl (t) + ﬁGainxGain (t) + ﬁLossXLoss (t) + [J)distxdist (t)

HRF-convolved time course

Example from a single subject’s run



Single-subject results (Tom et al. 2007)

Not the pretty pictures you often see in fMRI papers ...

For fMRI experiments, we typically need ~20 subjects’ data to
obtain meaningful results



Group results (Tom et al., 2007)

e Analysis done at the group level is different from that done at
the single-subject level (we won’ t get into this today)

Potential losses Potential gains

* Network of regions positively correlated with gains and
negatively correlated with losses



Additional Material



Modeling h(t)

We need to have a good estimate of h(t)
Beyond canonical HRF

- Modeling the derivative
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Modeling the derivative

Y(t)=pX(t)

Y(t)= BX(t +8) Y(t)= ﬁ(X(t)+(5X'(t)+ ...)z[)’1X(t)+ BX (t)

X(t+8)=X(t)+ X (t) +...
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Finite Impulse Response (FIR) models

- Treating each time point within a selected window as a parameter
be estimated

. The time window you picked

Regressors




Finite Impulse Response (FIR) models

- Treating each time point within a selected window as a parameter
be estimated

Parameter Estimates

Parameter estimate magnitude

ons oOns ons ons ons ons ons ons ons ONs Ons ons
2 42 <4 +6 <8 <10 +12 +14 +16 <18 =20

- Advantage:
- no assumption needs to be made about the HRF

- more flexible to estimate the shape of HRF



Finite Impulse Response (FIR) models

- Treating each time point within a selected window as a parameter
be estimated

- Advantage:
- no assumption needs to be made about the HRF

- more flexible to estimate the shape of HRF

- disadvantage:
- increase in variability of parameter estimates
- over-fitting (choice of the length of window critical)

- not easy to set up group analysis (multivariate problem)



Constrained basis sets

- Picking a number of basis functions known to capture HRF

Example:

A 8

- 4 basis functions - 4 linear combinations of the basis functions




Constrained basis sets

- Picking a number of basis functions known to capture HRF

- a balance between FIR and canonical HRF;

BOLD activation

—Double Gamma

Basis functions
FIR

[T Timeto peak slower than

Canonical HRF

Time relative to stmulus onset (s)



The BOLD noise



Characterizing the noise

- low frequency drift

Time Domain Frequency Domain
(W) 40 N N
T <
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Source: scanner as an additional source of structured noise

Important: avoid designing experiment between 0-0.015 Hz
(block length no more than 35 s for on-off block design)



Characterizing the noise

- low frequency drift

Source: scanner as an additional source of structured noise

Important: avoid designing experiment between 0-0.015 Hz
(block length no more than 35 s for on-off block design)

- How to remove
Step 1: high-pass filtering

Step 2: pre-whitening to remove temporal autocorrelation



Pre-whitening

- Estimate the residuals by ignoring autocorrelation in the data

Y =XB+¢,e:N(0,0°)

- We get Vwhere 0°V is the covariance of the matrix

vl P 1 P where Cor(e e _)=p"

g T (s the time lag)



Pre-whitening
- Estimate the residuals by ignoring autocorrelation in the data

Y =XB+¢,e:N(0,0°)

- We get V where 0°V is the covariance of &

- Find W such that WWW =1

- Apply W to both sides of the equation

WY =WXB+W.

- This made sure the estimated noise is i.i.d (no correlation in time)



Pre-whitening

- This made sure the estimated noise is i.i.d (no correlation in time)

- Important: W dependent upon X

When your GLM changes, so does W



Once we have the pre-whitened data, we are ready to
estimate the parameters of interest in our GLM.



But ...

- Is my design good?

Y=XP+¢
- Covariance

cov(/;’)=(X'X)_1 o’

- Design efficiency usually refers to the variance due to the design,
So for a contrast ¢, the efficiency for that contrast is

eff(c[;’) =

Variance of your design matrix



Thinking about timing ...

Suppose you have 2 trial types and you want to model them
Separately.

Fixed time = 6s

EAVINININININIVINIVAVININ,

Time IS]
Random time between 1 and 11 s

PPNANNNNAGY

When you have a fixed ISl (inter-stimulus interval), the correlation
between your trial-type regressors is going to be high.



Thinking about timing ...

Suppose you have 2 trial types and you want to model them
Separately.

thm =6s

_y¢¢¢¢¢¢¢¢¢¢¢¢

R ndom time btw 1 nd 11 s

/MWMWwN\M

You can reduce that correlation by introducing random timing
Jitters between trials



Calculating efficiency

Fixed time = 6s

gk NINININININ) J_\ NAVAVINAV

- The correlation between the two time courses was -0.61

0.3465 0.5703

- For contrast c=[1 0],

1 1

efflc/) = . 0.5632

=1.76

c(x'x)_1 c



Calculating efficiency

R ndom time btw 1 nd 11 s

AN W\M N

- The correlation between the two time courses was -0.15

)1 ( 0.3606 0.0602 )

(x'x | 0.0602 0.4640 |

- For contrast c=[1 0],

eff(cf)=— =T _277

1 _1|
c(XX) c 0.3606




Calculating efficiency

- For contrast c=[1 0],

thm =6s

f?@ﬁwwwwwwwwwi ofer) =17

R ndom time btw 1 nd11s

DU SANNDGY e

The efficiency is better with the design that jitters timing (in
this case from a uniform distribution [1s 11s]



Thinking about timing ...

Final note: it’s all about how you would like to analyze your data.

- The correlation is introduced because you wish to model the
different trial types separately (a legitimate model), and the
fact that one trial type always follows the other (in this example)

- It is always a good exercise to come up with a design matrix (or
multiple design matrices) for analyzing your data before you even
start collecting data!



