Model-based fMRI analysis

Shih-Wei Wu fMRI workshop, NCCU, Jan. 19, 2014

Outline: model-based fMRI analysis

I: General linear model: basic concepts

II: Modeling how the brain makes decisions: Decision-making models

III: Modeling how the brain learns: Reinforcement learning models

IV: Modeling response dynamics: Drift diffusion model

Problem: Characterizing mental operations

How do we characterize the mental operations involved in producing behavioral response given the stimulus?

Problem: Characterizing mental operations

1. How do we characterize the mental operations involved in producing behavioral response given the stimulus?

Stimulus ----- Response

Mental operations cannot be simply represented by the observable: stimulus and response

Problem: Characterizing mental operations

- 1. How do we characterize the mental operations involved in producing behavioral response given the stimulus?
- 2. Mental operations cannot be simply represented by the observable: stimulus and response

Stimulus -----

→ Response

Problem: Characterizing mental operations

One option: Build or apply some computational model that

Univariate analysis

- Each voxel in the brain is analyzed *separately*

Time-series data

- Suppose you have the following experiment

Time-series data

- This is the data you get (from a single voxel)

Time-series data

- When you compare prediction (based on your design) and data, you realize that there is somewhat a match, but not close

Time-series data

- What about this one? Which aspect of the comparison is the same, which aspect might be different?

Parameter estimate: this is what we are interested in

BOLD times series

Design matrix

Parameter vector

(BOLD: Blood Oxygenation Level Dependent)

Modeling how the brain makes decisions: Decision-making models

Losses loom larger than gains

- The psychological impact of a loss (or potential loss) is greater than the same-sized gain (or potential gain)

Prospect theory

- Value function

$$V(x) = \begin{cases} x^{\alpha}, x \ge 0 \\ -\lambda (-x)^{\beta} \end{cases}$$

λ: Controls the degree of loss aversion

Implication of loss aversion on choice behavior

Example: Is (gain \$2000,50%; Lose \$1000,50%) an attractive gamble?

Suppose

$$\alpha$$
 = 1, β = 1, λ = 2

Then the value of the gamble is

$$V(\$2000) \cdot 0.5 + V(-\$1000) \cdot 0.5$$
$$= 2000 \cdot 0.5 - 2 \cdot 1000 \cdot 0.5 = 0$$

This gamble is not attractive at all to the decision maker and hence it is not likely that s/he is going to bet on it

Prospect theory in the brain?

- 1. How does the brain represent gains and losses?
- 2. Is there a way to explain loss aversion from a neurobiological perspective?

Neural basis of loss aversion

- Tom et al. (2007, Science): A decision-making experiment involving monetary gains and losses

Russell Poldrack

- Subjects in each trial had to decide whether to accept a gamble (Gain,50%; Loss,50%)

Gain and loss in each trial were decided independently

Measuring loss aversion by choice behavior

- Suppose this is the data from a subject

Trial	Gain	Loss	Choice (yes/no)
1	\$1000	\$800	0
2	\$2000	\$1000	0
3	\$350	\$450	0
4	\$500	\$100	1
5	\$1200	\$380	1
6	\$60	\$55	0
7	\$290	\$148	0
			•
			•

Measuring loss aversion by choice behavior

- We can estimate how much loss averse a subject is based on his /her choice data

Trial	Gain	Loss	Choice (yes/no)
1	\$1000	\$800	0
2	\$2000	\$1000	0
3	\$350	\$450	0
4	\$500	\$100	1
5	\$1200	\$380	1
6	\$60	\$55	0
7	\$290	\$148	0

 Method: Logistic regression (a statistical method)

$$choice = \beta_{G}Gain + \beta_{L}Loss$$

 $\beta_{\rm G}$: how strong gains contribute to choice data

 β_L : how strong losses contribute to choice data

• Degree of loss aversion
$$\lambda_{behavior} = \frac{-\beta_L}{\beta_C}$$

Measuring loss aversion by neural activity

Neural measure of loss aversion:

$$\lambda_{neural} = -\beta_{Losses}^{neural} - \beta_{Gains}^{neural}$$

Analysis focus

- 1. How does the brain represent gains and losses?
 - Prospect theory indicates positive correlation with gains, negative correlation with losses; if this is the case, then

$$\beta_{Gains}^{neural}$$
: positive

 β_{Losses}^{neural} : negative

Analysis focus

- 2. Neural basis of loss aversion
 - An area driving (contributing to) loss aversion should exhibit a close match between loss aversion measured in behavior and loss aversion measured according to its neural activity (psychometric -neurometric match)

$$\lambda$$
behavior $\propto \lambda$
neural

Neural representation of gains and losses

• vmPFC and ventral striatum positively correlated with gains and negatively correlated with losses

Neural basis of loss aversion

• Neural measure of loss aversion in ventral striatum strongly correlated with behavioral measure of loss aversion

III. Modeling how the brain learns: Reinforcement learning models

Example: O' Doherty et al. (2003)

Pavlovian conditioning task

Example: O' Doherty et al. (2003) Pavlovian conditioning task

Stimulus-reward associations

# trials delivery	# trials no delivery	
80	20	
80	20	
# trials = 80	# trials = 80	

^{*}Randomization on stimulus order and delivery/no delivery

Example: O' Doherty et al. (2003) Pavlovian conditioning task

Stimulus-reward associations

# trials delivery	# trials no delivery	
80	20	
80	20	
# trials = 80	# trials = 80	

^{*}Randomization on stimulus order and delivery/no delivery

Example: O' Doherty et al. (2003) Pavlovian conditioning task

• Behavioral results:

The animals exhibit conditioned response (salivate when seeing the stimulus) after experiencing the stimulus-reward pairing

Activity of midbrain dopamine neurons (Schultz et al. 1997)

Question:

How do we characterize the learning process (learning the association between stimulus and reward) that takes place in the brain?

Observations:

1. Midbrain DA neurons first showed an increase in firing in response to reward delivery

No prediction Reward occurs

Observations:

2. When a stimulus is paired with a reward, midbrain DA neurons gradually (over the course of experiment) 'shift' their responses to the time the stimulus is presented

Observations:

3. When a reward is expected after a stimulus is presented and when the reward is indeed delivered, no change in DA response

Observations:

4. When a reward is expected after a stimulus is presented and when the reward is NOT delivered, there is a *decrease* in DA response

Example: O' Doherty et al. (2003) Pavlovian conditioning task

Questions:

- How could we explain the 4 observations we just made about neural activity in midbrain DA neurons?
- How could we quantitatively describe or even predict the neuronal response profiles?

Example: O' Doherty et al. (2003) Pavlovian conditioning task

A solution:

Apply a computational learning model: Temporal difference (TD) model (Sutton & Barto, 1990)

Temporal difference (TD) learning

• Define a value for each moment in time separately, $V(t_i)$

$$v(t_i) = E\left[r(t_i) + \gamma r(t_i + 1) + \gamma^2 r(t_i + 2) + \dots\right]$$

$$0 \le \gamma \le 1$$
discount parameter

The value at t_i is the sum of expected future rewards

Temporal difference (TD) learning

$$V(t) = E[r(t) + \gamma r(t+1) + \gamma^2 r(t+2) + ...]$$

can be expressed as

$$V(t) = E \left[r(t) + \gamma V(t+1) \right]$$

Hence

$$E[r(t)] = \hat{V}(t) - \gamma \hat{V}(t+1)$$

Temporal difference (TD) learning

Updating occurs by comparing the difference between

$$r(t)$$
 $E[r(t)]$

What actually occurs

What is expected to occur

$$V_{\text{new}}(t) = V_{\text{new}}(t) + \alpha \left[r(t) - E[r(t)] \right]$$

Prediction error δ

Temporal difference (TD) learning

Updating equation

$$V_{new}(t) = V_{new}(t) + \alpha \left[r(t) - E[r(t)] \right]$$

Given

$$E[r(t)] = \hat{V}(t) - \gamma \hat{V}(t+1)$$

We get

$$V_{new}(t) = V_{old}(t) + \alpha \left[r(t) + \gamma V_{old}(t+1) - V_{old}(t) \right]$$
learning rate

Temporal difference (TD) learning

Updating equation

$$V_{new}(t) = V_{new}(t) + \alpha \left[r(t) - E[r(t)] \right]$$

$$V_{new}(t) = V_{old}(t) + \alpha \left[r(t) + \gamma V_{old}(t+1) - V_{old}(t) \right]$$

Prediction error δ

Temporal difference (TD) learning

Trial 1:

$$V_{trial1}(t_1) = V_{trial0}(t_1) + \alpha \left[r_{trial1}(t_1) + \gamma V_{trial0}(t_2) - V_{trial0}(t_1) \right] = 0$$

Temporal difference (TD) learning

Trial 1:

For t_2

$$V_{trial1}(t_2) = V_{trial0}(t_2) + \alpha \left[r_{trial1}(t_2) + \gamma V_{trial0}(t_3) - V_{trial0}(t_2) \right] = 0$$

Temporal difference (TD) learning

Trial 1:

For
$$t_3$$

$$V_{trial1}(t_3) = V_{trial0}(t_3) + \alpha \left[r_{trial1}(t_3) + \gamma V_{trial0}(t_4) - V_{trial0}(t_3) \right] = \alpha$$

Temporal difference (TD) learning

Trial 1:

For t_4

$$V_{trial1}(t_4) = V_{trial0}(t_4) + \alpha \left[r_{trial1}(t_4) + \gamma V_{trial0}(t_5) - V_{trial0}(t_4) \right] = 0$$

Temporal difference (TD) learning

$$V_{trial2}(t_1) = V_{trial1}(t_1) + \alpha \left[r_{trial2}(t_1) + \gamma V_{trial1}(t_2) - V_{trial1}(t_1) \right] = 0$$

Temporal difference (TD) learning

$$V_{trial2}(t_2) = V_{trial1}(t_2) + \alpha \left[r_{trial2}(t_2) + \gamma V_{trial1}(t_3) - V_{trial1}(t_2) \right] = \gamma \alpha^2$$

Temporal difference (TD) learning

$$V_{trial2}(t_3) = V_{trial1}(t_3) + \alpha \left[r_{trial2}(t_3) + \gamma V_{trial1}(t_4) - V_{trial1}(t_3) \right] = 2\alpha - \alpha^2$$

Temporal difference (TD) learning

$$V_{trial2}(t_4) = V_{trial1}(t_4) + \alpha \left[r_{trial2}(t_4) + \gamma V_{trial1}(t_5) - V_{trial1}(t_4) \right] = 0$$

Temporal difference (TD) learning

$$V_{trial3}(t_1) = V_{trial2}(t_1) + \alpha \left[r_{trial3}(t_1) + \gamma V_{trial2}(t_2) - V_{trial2}(t_1) \right] = \gamma^2 \alpha^3$$

Temporal difference (TD) learning

$$V_{trial3}(t_2) = V_{trial2}(t_2) + \alpha \left[r_{trial3}(t_2) + \gamma V_{trial2}(t_3) - V_{trial2}(t_2) \right]$$

= $\delta(3\alpha^2 - 2\alpha^3)$

Temporal difference (TD) learning

$$V_{trial3}(t_3) = V_{trial2}(t_3) + \alpha \left[r_{trial3}(t_3) + \gamma V_{trial2}(t_4) - V_{trial2}(t_3) \right]$$
$$= 3\alpha - 3\alpha^2 + \alpha^3$$

Temporal difference (TD) learning

$$V_{trial3}(t_4) = V_{trial2}(t_4) + \alpha \left[r_{trial3}(t_4) + \gamma V_{trial2}(t_5) - V_{trial2}(t_4) \right] = 0$$

Temporal difference (TD) learning

Temporal difference (TD) learning

Temporal difference (TD) learning

Let's look at prediction error δ

Recall that

$$V_{trial(X+1)}(t) = V_{trialX}(t) + \alpha \left[r_{trial(X+1)}(t) + \gamma V_{trialX}(t+1) - V_{trialX}(t) \right]$$

$$\delta$$

Just looking at t_3

Just looking at t_3

Temporal difference (TD) learning

Based on TD model, we can

- Construct a General Linear Model (GLM) to analyze data

TD model provides a quantitative prediction on the time course of data

Modeling response dynamics: Drift diffusion model

Action selection is a dynamic process

- Multiple alternatives compete during this process

30% motion coherence

5% motion coherence

Question: how do we model the dynamics of neural activity during this process?

Dynamics of neural activity during stimulus presentation

- Activity in area LIP rises up faster as motion coherence level increases
- Prior to eye movement, activity does not differ between different coherence trials

Modeling response dynamics as an evidence accumulation process

Firing rates behave as if neurons integrate momentary evidence over time

Each moment in time:

$$\log LR(t_i) = \log \frac{p(e(\theta, t_i) | L)}{p(e(\theta, t_i) | R)}$$

 θ = motion coherence

Over time:

$$\log LR(t_1,...t_k) = \sum_{i} \log LR(t_i)$$

Golad & Shadlen (2007, ARN)

Use Drift diffusion model to characterize evidence accumulation and action selection

Use Drift diffusion model to characterize evidence accumulation and action selection

What determines the drift?

Ans: Momentary evidence is sampled from a Gaussian distribution to determine the next step

Gold & Shadlen (2007, ARN)