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Outline: model-based fMRI analysis

I: General linear model: basic concepts

II: Modeling how the brain makes decisions: Decision-making models
lll: Modeling how the brain learns: Reinforcement learning models

IV: Modeling response dynamics: Drift diffusion model



Model-based fMRI

Problem: Characterizing mental operations
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Model-based fMRI

Problem: Characterizing mental operations

One option: Build or apply some computational model that

StlmU|US g — Response
quantitatively describes the describes the behavioral

mental operations performance



|. General linear model: basic concepts

Univariate analysis

- Each voxel in the brain is analyzed separately

- Each voxel presents a time-series data

Time



|. General linear model: basic concepts

Time-series data

- Suppose you have the following experiment
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|. General linear model: basic concepts

Time-series data

- This is the data you get (from a single voxel)
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|. General linea

Time-series data

BOLD signal (arbitrary units)

r model: basic concepts

- When you compare prediction (based on your design) and

data, you realize that there is
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|. General linear model: basic concepts

Time-series data

- What about this one? Which aspect of the comparison is the
same, which aspect might be different?

BOLD signal (arbitrary units)
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Time (sec)

120



|. General linear model: basic concepts

BOLD signal Design matrix

) @ X + noise

v
Parameter estimate: this is what we are interested in



|. General linear model: basic concepts

Y =XB+¢,e~N(0,0°%)

/N

m —

BOLD times series Design matrix  Parameter vector

(BOLD: Blood Oxygenation Level Dependent)



Modeling how the brain makes decisions:
Decision-making models



Il. Modeling how the brain makes decisions

Losses loom larger than gains

B
i B

- The psychological impact of a loss (or potential loss) is greater than
the same-sized gain (or potential gain)



Il. Modeling how the brain makes decisions

Prospect theory

- Value function
VALUE - |
(04

x“x=0

V(X) = 3 i -
~2(-x]
LOSSES e GAINS N ’
. Controls the degree of
reference point " loss aversion

Loss aversion: Steeper slope
in the loss domain compared with gains



Il. Modeling how the brain makes decisions

Implication of loss aversion on choice behavior

Example: Is (gain $2000,50%; Lose $1000,50%) an attractive gamble?

Suppose
a=1p=1,A1=2

Then the value of the gamble is

V($2000)- 0.5 + V(-$1000)-0.5
~2000-0.5-2-1000-0.5=0

This gamble is not attractive at all to the decision maker and
hence it is not likely that s/he is going to bet on it



Il. Modeling how the brain makes decisions

Prospect theory in the brain?

1. How does the brain represent gains and losses?

2. Is there a way to explain loss aversion from a neurobiological
perspective?

VALUE

LOSSES GAINS




Il. Modeling how the brain makes decisions

Neural basis of loss aversion

- Tom et al. (2007, Science): A decision-making
experiment involving monetary gains and losses

Russell Poldrack

A s s Time ...
VI | FIR peesmmocipmmno] IR (e - Subjects in each trial had to
interval ISI i
Goecs)  (means6eece) dec.lde whether to accept a gamble
o / (Gain,50%; Loss,50%)
10  Potential gain 40

T
- Gain and loss in each trial were
decided independently

Gain/loss matrix

Potential los

-20




Il. Modeling how the brain makes decisions

Measuring loss aversion by choice behavior

- Suppose this is the data from a subject

Trial Gain Loss Choice
(yes/no)
1 $1000 $800 0
2 $2000 $1000 0
3 $350 $450 0
4 $500 $100 1
5 $1200 $380 1
6 $60 $55 0
7 $290 $148 0



Il. Modeling how the brain makes decisions

Measuring loss aversion by choice behavior

- We can estimate how much loss averse a subject is based on his

/her choice data

Trial Gain Loss Choice
(yes/no)
1 $1000 $800 0
2 $2000 $1000 0
3 $350 $450 0
4 $500 $100 1
5 $1200 $380 1
6 $60 $55 0
7 $290 $148 0

e Method: Logistic regression
(a statistical method)

choice = B.Gain + f3,Loss

B how strong gains contribute
to choice data

B, how strong losses contribute
to choice data

e Degree of loss aversion

L

behavior /J)
G



Il. Modeling how the brain makes decisions

Measuring loss aversion by neural activity

Design matrix Beta
*‘:} BOLD &
N Gains Losses
/);neural
Gains
[))neural
Losses
Time — X
v
- _ neural neural
Neural measure of loss aversion: neural _/))Losses ~ FGains



Il. Modeling how the brain makes decisions

Analysis focus

1. How does the brain represent gains and losses?

- Prospect theory indicates positive correlation with gains, negative
correlation with losses; if this is the case, then

Bt s positive

Gains

B negative

Losses



Il. Modeling how the brain makes decisions

Analysis focus

2. Neural basis of loss aversion

- An area driving (contributing to) loss aversion should exhibit a
close match between loss aversion measured in behavior and loss
aversion measured according to its neural activity (psychometric
-neurometric match)

A o A

behavior neural



Il. Modeling how the brain makes decisions

Neural representation of gains and losses

e vymPFC and ventral striatum positively correlated with gains
and negatively correlated with losses

VALUE

Potential losses Potential gains

LOSSES GAINS




Il. Modeling how the brain makes decisions
Neural basis of loss aversion

* Neural measure of loss aversion in ventral striatum strongly
correlated with behavioral measure of loss aversion

N

r=0.85, P<0.001
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I1l. Modeling how the brain learns:
Reinforcement learning models



I1l. Modeling how the brain learns

Example: O’ Doherty et al. (2003)

Pavlovian conditioning task

i’
ooy + +
| | | | | .
3 sec l 3 sec 3 sec l 3 sec time

Taste delivery Taste delivery



I1l. Modeling how the brain learns
Example: O’ Doherty et al. (2003) Pavlovian conditioning task

Stimulus-reward associations

# trials delivery # trials no delivery
A
> » 80 20
M' " I"‘
80 20
# trials = 80

*Randomization on stimulus order and delivery/no delivery
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I1l. Modeling how the brain learns

Example: O’ Doherty et al. (2003) Pavlovian conditioning task

e Behavioral results:

The animals exhibit conditioned response (salivate when seeing
the stimulus) after experiencing the stimulus-reward pairing



I1l. Modeling how the brain learns

e Activity of midbrain dopamine neurons (Schultz et al. 1997)

No prediction
Reward occurs

Burst of firing after reward delivery

Reward predicted

Reward occurs Burst of firing after stimulus;

activity remained at baseline at
reward delivery

Reward predicted

No reward occurs Burst of firing after stimulus;

activity dipped down when no
reward was delivered




I1l. Modeling how the brain learns

Question:

How do we characterize the learning process (learning the
association between stimulus and reward) that takes place in
the brain?



I1l. Modeling how the brain learns

Observations:

1. Midbrain DA neurons first showed an increase in firing in
response to reward delivery

No prediction
Reward occurs




I1l. Modeling how the brain learns

Observations:

2. When a stimulus is paired with a reward, midbrain DA
neurons gradually (over the course of experiment) ‘shift” their
responses to the time the stimulus is presented

No prediction
Reward occurs

Reward predicted
Reward occurs




I1l. Modeling how the brain learns

Observations:

3. When a reward is expected after a stimulus is presented and
when the reward is indeed delivered, no change in DA
response

Reward predicted
Reward occurs




I1l. Modeling how the brain learns

Observations:

4. When a reward is expected after a stimulus is presented and
when the reward is NOT delivered, there is a decrease in DA
response

Reward predicted
No reward occurs




I1l. Modeling how the brain learns

Example: O’ Doherty et al. (2003) Pavlovian conditioning task

Questions:

* How could we explain the 4 observations we just made about
neural activity in midbrain DA neurons?

* How could we quantitatively describe or even predict the
neuronal response profiles?



I1l. Modeling how the brain learns

Example: O’ Doherty et al. (2003) Pavlovian conditioning task

A solution:

Apply a computational learning model: Temporal difference
(TD) model (Sutton & Barto, 1990)



I1l. Modeling how the brain learns

Temporal difference (TD) learning

time

* Define a value for each moment in time separately, V/(t)

v(t)=E [r(ti)+ yr(t +1)+ yzr(ti +2)+ ]
O<y =<1

discount parameter

The value at t; is the sum of expected future rewards



I1l. Modeling how the brain learns

Temporal difference (TD) learning
V(t)=E [r(t) +yr(t+ D) +y°r(t+2)+ ]

can be expressed as

V(t)= E[r(t)+ yV(t+1)]

Hence

~n

E[r(t)]=V(t)- yV(t +1)



I1l. Modeling how the brain learns
Temporal difference (TD) learning

Updating occurs by comparing the difference between

r(t) E{r®)]

What actually occurs What is expected to occur

V.o (§) =V, (O) + a [r(t) = E[r(t)]

new new

Prediction error



I1l. Modeling how the brain learns
Temporal difference (TD) learning

Updating equation
vV [t)=V _(t)+a«a [r(t) — E[r(t)]]

Given

E[r(t)] = V(t)-yV(t +1)

We get
V. )=V (f)+a«a [r(t) +yV (t+1)-V

old
)

learning rate

(t)]



I1l. Modeling how the brain learns
Temporal difference (TD) learning

Updating equation

vV [t)=V _(t)+a«a [r(t) — E[r(t)]]

new

Voo (1) = Vo () + @ [F(0) + 7V, (£ + 1) =V, (1)]

Prediction error



I1l. Modeling how the brain learns

Temporal difference (TD) learning

Trial 1:

|
T time

o)
Suppose at t1 yousee 2 <.

v

tr/al1(t ) trlaIO( )+ « [ tr/al1(t )+ Y trlaIO(t )_ \/triaIO(t1)] - O

assume

V e . a=0.5y =0.99




I1l. Modeling how the brain learns

Temporal difference (TD) learning

Trial 1:

T time
t2

Fixation (nothing happened)
For 1,
Viarn(s) = Vo (£,) + @ ['}riam(tz) + Y Vo (t3) = Vo (£ )] =0

1_

Voo

._
‘_

time

~~

~=
N

~=



I1l. Modeling how the brain learns

Temporal difference (TD) learning

Trial 1:

T time
t3 A reward is delivered

For t3

tr/a/1(t ) traIO( )+ o [’;‘rial1(t ) Vtr/alo(t ) Vz‘rialO(tS)] =a

Vi o—e—0 ? time
t




I1l. Modeling how the brain learns

Temporal difference (TD) learning

Trial 1:

* time
Q.

fixation
Fort4

tna/1(t ) tra/O( )+ a [ tra/1(t )+ )/ traIO(t )_ \/trialo(t4)] = O

time

Koy S




I1l. Modeling how the brain learns

Temporal difference (TD) learning

Trial 2:

|
T time
Viarz (&) = Vi () + ¢ [rtrial2(t1) + Y Vian(ly) - \/trial1(t1)] =0

VO‘ | time




I1l. Modeling how the brain learns

Temporal difference (TD) learning

Trial 2:

|
T time

t2 fixation

Viarz (&) = V() + @ [r;‘riaIZ(tZ) + Y Van(ly) - \/trial1(t2)] = ya”

time




I1l. Modeling how the brain learns

Temporal difference (TD) learning

Trial 2:

|
T time
t3 A reward is delivered

Viiaro(t3) = V() + [rtriaIZ(tB) YV () =V (& )] =20-a’

time




I1l. Modeling how the brain learns

Temporal difference (TD) learning

Trial 2:

* time
Q.

fixation

\/trial2( ) tr/al1(t ) [ IZ(t )+}/ tr/al1( ) tr/al1(t )]

di o
Vi oo ° | ® time
t, t, t, I,




I1l. Modeling how the brain learns

Temporal difference (TD) learning

Trial 3:
|
T time
AT
f, = %

(EVA

Viara (L) = Vo (1) + @ [rtrial3(t1) + YV (t,) - \/triaIZ(t1)] =y°a’

time




I1l. Modeling how the brain learns

Temporal difference (TD) learning

Trial 3:
|

T time
t

5 fixation

\/tr/aIB(t ) trla/2(t )+ a [I;ria/3(t2) trlaIZ(t ) tr/al2( )]

= 8(3a” - 2a°)
1E
@
Voo ° | | time
L, t, 1




I1l. Modeling how the brain learns

Temporal difference (TD) learning

Trial 3:

|
T time
t3 A reward is delivered

tr/al3(t ) tr/al2( )+OC [rtria/3(t ) y\/trlaIZ(t ) \/trial2(t3)]

=3a-3a° +a°

time




I1l. Modeling how the brain learns

Temporal difference (TD) learning

Trial 3:

* time
t4

fixation

Viara(l4) = Vi (£,) + @ [rtria/3(t4) + Y Voo ts) = Vi (L, )] =0

17 O
@
4 0 e | @ time
l‘1 t2 t3 t4




I1l. Modeling how the brain learns

Temporal difference (TD) learning

Trial 1: 1F
O
V oe—e O fme
t t, t ot
Trial 2:
1F
O
V 0 ‘ © | @ time
t t, ot
Trial 3: 1+ °
. ©
4 0 ° ' @ time
t t, ot




I1l. Modeling how the brain learns

Temporal difference (TD) learning

Trial 4: 1F ®
° @
4 0 ® time
t ottt
Trial 5: n o
° @
4 0 ' ® time
t ottt
Trial 6: 1+ ° ° ®
4 0 ' ® time
t ottt




I1l. Modeling how the brain learns

Temporal difference (TD) learning

Let” s look at prediction errord

Recall that
Vtrial(X+1)(t) - \/triaIX(t) T Q [rtrial(X+‘I)(t) + y\/triaIX(t t 1) - VtrialX(t)]

0




I1l. Modeling how the brain learns

Just looking at £,

Trial 1: 1F O
0 0 time
t1 t2 t3 t4
Trial 2:
1F
O
O O ' | time
t1 t2 t3 t4
Trial 3: 1F
O
O O ' | time
t1 t2 t3 t4




I1l. Modeling how the brain learns

Just looking at £,

Trial 4: 1F
O
0 0 time
t1 t2 3 t4
Trial 5:
1F
O O ® | time
t1 t2 t3 t4
Trial 6: 1F
O O @ | time
t1 t2 t3 t4




I1l. Modeling how the brain learns

Temporal difference (TD) learning

Reward predicted
Reward occurs

time



I1l. Modeling how the brain learns

Based on TD model, we can

- Construct a General Linear Model (GLM) to analyze data

Y(t)= B, + B,x,(t)+ B,V(t)+ B,5(t)

/ { Prediction error

Indicator variable Value at t

TD model provides a quantitative prediction on the time
course of data



Modeling response dynamics:
Drift diffusion model



V. Modeling response dynamics

Action selection is a dynamic process

- Multiple alternatives compete during this process

30% motion coherence 5% motion coherence

Question: how do we model the dynamics of neural activity during
this process?

Courtesy to Bill Newsome



V. Modeling response dynamics

Dynamics of neural activity during stimulus presentation

Motion
70 ., strength

51.2

60 |

w
o
T

40 |

Firing rate (sp s7)

0 200 400 600 800
Time (ms)

- Activity in area LIP rises up faster as
motion coherence level increases

- Prior to eye movement, activity
does not differ between different
coherence trials

Golad & Shadlen (2007, ARN)



V. Modeling response dynamics

Modeling response dynamics as an evidence
accumulation process

Firing rates behave as if neurons integrate momentary evidence over time

Motion

700 |, strength | Each moment in time:
51.2
= 12.8
— e(6,t)|L
60 | logLR(t,)=log pe.t)IL)
_ p(e(0,t)[R)
% 50 6 = motion coherence
B
:g 40 |
- Over time:
logLR(t,, E logLR(t.)
20 o .
0 200 400 600 800 -200 0
Time (ms)

Golad & Shadlen (2007, ARN)



V. Modeling response dynamics

Use Drift diffusion model to characterize evidence
accumulation and action selection

Accumulated
evidence

for h, over h,

Choose H, Decision bound

&)
)
A )

.
-
-
-
-
-
-
-
-
.
-
-
-
-
-
-
- \

(e.g. leftward motion)

The point process ‘drifts’ as time goes by

Mean drift rate = mean of e

Decision bound

\

Choose f, (e.g. rightward motion)

Starting point

(unbiased)
Gold & Shadlen (2007, ARN)



V. Modeling response dynamics

Use Drift diffusion model to characterize evidence
accumulation and action selection

What determines the drift?
Ans: Momentary evidence is sampled from a Gaussian distribution

to determine the next step

Choose H .

-c \NN
Q — SN
w89 ~~—— Mean of e depends
— > ™~ h
> g (e) 0 . on strength of
Esg evidence
3> = , /
2 00 Mean drift rate = mean of e

-A

Choose H,

Gold & Shadlen (2007, ARN)






