

Slice timing

Only needed if:

- Temporal dynamics of evoked responses are important and if
- TR is sufficiently small to permit interpolation (<3 seconds)
- BioPhysical latency is on the order of seconds
- Usually unnecessary if latency differences are modelled in SPM analysis "proper" using temporal derivatives.

Slice timing Output: afilename.hdr afilename.img afilename.mat

Realignment of subject motion

Why bother?

- Subsequent analysis assumes that voxel = bit of brain (e.g. Subtraction and averaging)
- •Haemodynamic response is small compared to signal from movement
- •Increase sensitivity of t-test (movement contributes to variance)

Realignment of subject motion

When to do it?

- Must be done before Normalization
- Can be either before or after slice time correction (disadvantages to both options)
- For interleaved acquisitions it's recommended to slice time correct first
- For sequential acquisitions it's recommended to realign first

Realignment of subject motion | Survey Clarks Corregulate | Profess College Confess | Corregulate & Profess College C

Coregistration Align different modalities (eg PET & MRI) Align functional (EPI) with structural (T1) Optimize parameters describing rigid body transformation to match functional with structural

Normalisation and smoothing

- The story so far...
 - fMRI time data set
 - Movement between scans has been corrected for (realignment)
 - Functional data has been overlaid onto the high resolution anatomical data (coregistration)
- What next...?

Normalisation

What do we want from fMRI?

- 1. Analysis within subject data
- 2. Analysis between subjects

But how do we compare 2 different brains?

Squash the subjects data into a common 3D brain space.

How is the data warped?

- Either anatomical scan or functional data is used to estimate warping parameters, using one of the following models:
 - 12 parameter affine transformation
 - Low frequency basis spatial functions
 - Vector field specifying the mapping for each voxel

Problems with normalisation

- Structural alignment does not mean functional alignment
- Differences in gyral anatomy and physiology lead to non-perfect fit
- Strict warping to template will create nonexistent features
- Brain pathology may confuse the normalising procedure

Smoothing

How?

Intensity value of a voxel is replaced by a weighted average of the neighbouring voxels

Why smooth?

- 1. Render the errors more normal in their distribution (I.e. Gaussian)
 - 2. For inter-subject analyses
 - 3. Increase signal-noise ratio

Summary

- 1. Realignment (adjust for movement between slices)
- $2. \quad \text{Co-registration (link functional scans to an atomical scan)} \\$
- 3. Normalisation (warp functional data into template space)
- 4. Smoothing (to increase signal to noise ratio)