General linear model: basic

* Introducing General Linear Model (GLM): Start with an example

* Properties of the BOLD signal

- Linear Time-Invariant (LTI) system

- The hemodynamic response function

e (Briefly) Evaluating efficiency of a design

* (Briefly) Going back to the example



Statistical analysis of BOLD data

Let’s start with an example:
Tom et al. (2007, Science)



Tom et al. (2007, Science)

- Question: Where and how are monetary gains and losses
represented in the brain when people are making risky
\

decisions?
Russ Poldrack

- Experimental design:
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Tom et al. (2007)

- Construct a General Linear Model (GLM) to analyze data

Y(t):ﬁo(t)+ﬂlxl(t)+ﬁGainXGain(t)+BLossXLoss(t)_i_ﬁdisthist(t)

/ Z Euclidian distance

Indicator variable The amount of gain The amount of loss

By having this model, we can look for brain areas correlated
with gains, losses, or both.



We will return to this example at the end of the lecture ...



General linear model

Y=XB+¢e,e~N(0,0%)

/Y

m >

BOLD times series Design matrix  Parameter vector

(BOLD: Blood Oxygenation Level Dependent)



Statistical analysis of BOLD data

Univariate appraoch

- Each voxel in the brain is analyzed separately

- Each voxel presents a time-series data

Time



Key

- Understanding the relation between BOLD signal and neural activity
- Understanding the properties of the BOLD signal

- Understanding the characteristics of noise in the BOLD signal



The BOLD signal

- Observed BOLD signal (example)
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- BOLD signal did not look exactly like the predicted
neural activity (in red)



The BOLD signal

- BOLD signal as a transformation of neural activity

f(x)
X » BOLD
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The BOLD signal

- BOLD signal as a transformation of neural activity

f(x)
X » BOLD

(neural activity)

- Identifying the properties of the transformation function is critical

- The first thing to check is if BOLD is a linear transform of neural
activity



Around the mid 1990s ...

- Boynton et al. (1996, J Neurosci.) tested the linear transform model
in primary visual cortex (V1)

fMRI
Response
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dynamics Scanner

fMRI Linear Transform

Stimulus VA1 R
Pathway osponee

Important: It was only assumed that the transformation
from neural response to fMRI response is linear.




Properties of a Linear Time-Invariant (LTI) system

- Homogeneity
Scalar Rule
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When the input magnitude is doubled, the output response
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Properties of a Linear Time-Invariant (LTI) system

- Additivity
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Properties of a Linear Time-Invariant (LTI) system

- Shift invariance
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Why is LTl system important?



If LTI holds,

Convolution

(o o]

(= £)(t)= [ h(z) (e~ 7)d.

\4

The output of a LTI system is simply the convolution of the input
and the impulse response function, h(t)



If LTI holds,

Convolution

(o o]

(= £)(t)= [ h(z) (e~ 7)d.

\4

The output of a LTI system is simply the convolution of the input
and the impulse response function, h(t)



Visualizing convolution (h# f)(t)= Th(f)f(t—r)dr.

- Suppose h(t) looks like

\_

- There is an impulse (an input) at time t

t

Time

- The impulse response to this input is obtained by convolving
the impulse with the impulse response function h(t)
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Visualizing convolution (h# f)(t)= Th(f)f(t—r)dr.

- Input time series

Time

- Output (response) time series (the sum of the 3 time series)
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Why is LTI system important?

- The output of a LTI system is simply the convolution of the input
and the impulse response function, h(t)

- All we need to know is h(t)



Boynton et al. (1996)

- flickering checkerboard task

- 4 pulse durations (3, 6, 12, 24 s)
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Boynton et al. (1996)

- Results

Look how response varies as a function of contrast
and duration; Could you tell if LTI is hold?
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Boynton et al. (1996)

- LTI assumption holds in most cases
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Modeling h(t)

We need to have a good estimate of h(t)



Modeling h(t)

We need to have a good estimate of h(t)

Friston et al. (1994), Lange & Zeger (1997)

PSU



Modeling h(t)

We need to have a good estimate of h(t)

Canonical HRF (double-gamma function)

PSU



The BOLD noise



Characterizing the noise

- low frequency drift
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Source: scanner as an additional source of structured noise

Important: avoid designing experiment between 0-0.015 Hz
(block length no more than 35 s for on-off block design)



Characterizing the noise

- low frequency drift

Source: scanner as an additional source of structured noise

Important: avoid designing experiment between 0-0.015 Hz
(block length no more than 35 s for on-off block design)

- How to remove
Step 1: high-pass filtering

Step 2: pre-whitening to remove temporal autocorrelation



Brief summary

- BOLD signal is the output of an approximate LTI system

- Sources of noise in the BOLD signal can be
approximately identified and removed during the
preprocessing stage of the data



The question, then, goes back to

- Is my design good?

Y=XB+¢

- Covariance

cov(B):(X'X)_1 o’

- Design efficiency usually refers to the variance due to the design,
So for a contrast ¢, the efficiency for that contrast is

eff(cf3) = 1

c(x'x)_1 c



Thinking about timing ...

Suppose you have 2 trial types and you want to model
them separately

Fixed time = 6s
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Random time between 1 and 11 s
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When you have a fixed ISI (inter-stimulus interval), the correlation
between your trial-type regressors is going to be high (poor
efficiency).



Thinking about timing ...

Suppose you have 2 trial types and you want to model
them separately

Fixed time = 6s
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You can reduce that correlation (improving efficiency) by

introducing random timing jitters between trials



Thinking about timing ...

Final note: it’s all about how you would like to analyze your data.

- The correlation is introduced because you wish to model the
different trial types separately (a legitimate model), and the
fact that one trial type always follows the other (in this example)

- It is always a good exercise to come up with a design matrix (or
multiple design matrices) for analyzing your data before you even
start collecting data!



Going back to the example:
Tom et al. (2007, Science)



Tom et al. (2007)
- Design

12 <14 ) ooy e iy S PR —
. response 5 variable +30| <7

interval I1SI
(3secs) (mean 2.6 secs)

10 Potential gain 4
T

Gain/loss matrix

Potential lo

‘
n
o

O

B Probability of acceptance Response time (secs)

. 1.0 5
§ J § 15
-l 0.6 —
© © 14
o 0.4 -
i) 9
8 0.2 g 1.3
20 0.0 20
10 40 10 40

Potential Gain ($) Potential Gain ($)



Tom et al. (2007)

- Construct General Linear Model (GLM) to analyze data

Y(t):ﬁo(t)+ﬂlxl(t)+ﬁGainXGain(t)+BLossXLoss(t)_i_ﬁdisthist(t)

/ / Euclidian distance

Indicator variable The amount of gain The amount of loss

Important:
This is the GLM that analyzes data of a single run of a single subject



Tom et al. (2007)

- Construct General Linear Model (GLM) to analyze data

Y(t):ﬁo(t)_i_ﬁlxl(t)-l_ﬁGainXGain(t)_i_ﬁLossXLoss(t)_'_ﬁdistxdist(t)

HRF-convolved time course

Example from a single subject’s run



Single-subject results (Tom et al. 2007)

Not the pretty pictures you often see in fMRI papers ...

For fMRI experiments, we typically need ~20 subjects’ data to
obtain meaningful results



Multi-level GLM

Level 1: Single-subject GLM Level 2: Group-level GLM
ﬁsubject1 ﬁsubject1
subject 2 subject 2

—> ~TePe

The goal is to estimate [,

ﬁsubject K ﬁsubject K

Multi-level GLM adopts a “summary statistics” approach
(Beckmann et al. 2003)



Multi-level GLM

- Multi-level GLM adopts a “summary statistics” approach
(Beckmann et al. 2003); more computationally efficient

- B, is a weighted average of the beta from individual subjects
(weight is inversely proportional to subject-specific variance)

- Variance at the group level is the sum of individual subjects’
variance and the variance at the group level (between subjects)

Var(B ) G;/+G§ G,i/ Within-subject variance
L) =
N Gé between-subject variance
t= ﬂG

n

Var(f,)



Group results (Tom et al., 2007)

e Network of regions positively correlated with gains (orange) and
negatively correlated with losses (blue)
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