]

TMBIC 2017 ERI D HTEIRI & =

FMR'E % an @-HTF:I'EIJF?JE

FMRI Experimental Designs and Data Preprocessing

REGREIFUR PRABRAMBERBHRFTFR




S
/ o
= "0 =

B

Martin A. Lindquist, Ph.D.

Tor D. Wager, Ph.D.

TMBIC 2016 ERI D HTENEH B E

N



https://leanpub.com/principlesoffmri
http://www.fmri-data-analysis.org/
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FUNCTIONAL

Magnetic Resonance Imaging
Third Edition

FL T 78 a0 S

Scott A, Huettel « Allen W. Song « Gregory McCarthy
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http://www.sinauer.com/functional-magnetic-resonance-imaging-737.html
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The Big Picture

Experimental Design

i

~ >,
Data Acquisition J ; _ )
L 2 Preprocessing Data Analysis
1 Slice-timing , = 7
Reconstruction J_' 1 o
Motion Correction, B
Co-registration & Connectivity @
Normalization e
Spatial e §
Smoothing Prediction O
>
! =
b o

Source: Lindquist & Tor (2015)
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HHEMRI - RIS

(1) Neuronal (3) Haemodynamic fMRI BOLD
activity response response
(2) Neurovascular (4) Detection by
stimulus ) coupling - MRI scanner
; i - :.:; f@ ] O3 o i 0_
) _
. o %;* P oo O
or modulation A
in background A A
activity (A)
Peak
i 53
- Excitatory activity - Metabolic signal - Blood flow - Magnetic field 9 %
and inhibitory activity unknown - Blood strength & Undershoot E
- Anaesthetic influence - Anaesthetic oxygenation - TR, repetition <5
influence level time Qui
- Blood volume - TE, echo time ©
- Haematocrit - Spin or gradient S
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TRENDS in MNeurosciences

Source:Arthurs & Boniface, 2002, Trends in Neurosciences




One Run

- Blocks ,
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“Plant” “Handbag”  “Pebble” “Chess” “Book” “Phone” “Anger” “Watch” “Window"” “Night”

() Alternating Design

(C) Interleaving null-task blocks
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FMRI Time Series

Repetition time (TR) Voxel Volume (image)
Py o
#/ i
1 2 y )
1,' 27" o Time series from one voxal
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Source: Lindquist & Tor (2015)
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IV and DV from the Perspective of
Data Analysis

- Observed BOLD signal (example)

at+ \ ' ' '
AN
Ll

1 1 1 | 1
0 50 100 150 200 250 300

BOLD magnitude

- BOLD signal did not look exactly like the predicted
neural activity (in red)
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General Linear Model

Data matrix

Y

fMRI data

H rows
(time points) by
V columns (voxels)

Design matrix

G

I FTOWS
(time points) by
M columns (regressors)

Parameter matrix

B

Error matrix

E.

V rows (voxels)
by M columns
(parameter weights)

H rows
(time points) by
V columns (voxels)
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FMRI Experimental Designs

- Blocked designs
- Event-related designs

- Mixed designs
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Design §
Slow ER A A A A A A
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Detection vs. Estimation

- Detection: determination of whether
activity of a given voxel (or region)
changes in response to the
experimental manipulation

- “which voxel?”

|_\

B

= Estimation: measurement of the time
AL course within an active voxel in response
to the experimental manipulation

gnal Change

i/

% Si
o

o 4 8 12 " “How does signal change in a voxel?”

Time (sec)
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Definitions modified from: Huettel, Song & McCarthy, 2004,
Functional Magnetic Resonance Imaging




Block Designs

A = trial of one type A = trial of another type
(e.g., face image) (e.g., place image)

Block AAAAAAAA AAAAAAAL AAAAAAAL 3

Design
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Early Assumption: Because the hemodynamic response delays and blurs the
response to activation, the temporal resolution of FMRI is limited.

Positive BOLD response
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Effect of Block Interval on
FMRI HRF
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Recommendations for Using
Blocked Design

3/7/2017

-Length of a block
* Minimally 10s and optimally |6s (Liu, 2004).

* Equivalent for conditions or combination of conditions
to be compared

- Evoking the same mental process
throughout a block
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Event-related Designs

Q -, : |

i ' '

Time

Slow ER ‘ ‘ ‘ ‘ ‘ .
Design

Rapid

Jittered ER ““‘ “‘ “‘ “““ “ ““ a
Design
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Slow Event-Related Designs

Slow ER ‘ ‘ ‘ ‘ ‘ ‘ i

Design
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Periodic (Slow) ER Design

- Fixed and long ISl
* Usually > I5s

* Each event evokes a complete HR, and corresponding
BOLD are selectively averaged.

* Inefficient
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Effects of IS| on ER-FMRI Activation

(A)
Visual cortex
ISI, sD ISI, sD
8,2
20, 20

MWWW s

Bandettinni & Cox (2000)

(B)

Motor cortex

ISI, SD IS1, SD

8,2
20, 20
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Slow Event-Related Design: Constant IT]

Visual Cortex 2 sstim
isi,sp  Block s, sp VAV IS

Bandettini et al. (2000)

20, 20 82 MMWWW What is the optimal trial spacing (duration +
intertrial interval, ITI) for a Spaced Mixed

2 "(WMWM Trial design with constant stimulus

22 ponVivR duration?
10, 2
W‘“NMW\,'“[ I 22 pytsieiypl

Visual Cortex Event-related average

ok
=)

TMBIC 2016 BN HTENIEIR B E

Percent Signal Change

Source: Bandettini et al., 2000




Source: Bandettini et al., 2000
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Optimal Constant IT]

- Brief (< 2 sec) stimuli:
* optimal trial spacing = 12

sec
° I'l.l't_ntur ————— Simulated
0.8 s Visual 04
- For longer stimuli: i 07 I
. . . = Jo.3 2
. >Etlmal trial spacing = 8 + 5 o 19° £
2*stimulus duration T o4 {o.2 2 "

g o3 : g
T 0.2 Joar 3
o ] o
. . x 0.1 ' -

- Effective loss in power of s 3L

FEPEPIE PRI PP B B ) |
12 16 20 24 28

1SI (s)

[
s i
e

event related design:
- =-35%
* i.e., for 6 minutes of block

design, run ~9 min ER
design
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Trial to Trial Variability
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Huettel, Song & McCarthy, 2004,
Functional Magnetic Resonance Imaging




3/7/2017

How Many Trials Do You Need!?

@ Subject 2 Subject | Subject 2
15 A
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5
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L 1 L 1 ]
0 15 30 45 60 75
Trials averaged

|1 I ]
Bl = ot S L P o — S — R BN R

FUWCTEMRAL MAGNETIC NESONANCE m:m‘ﬁ,ﬁr:uﬁf;rnwnl’; P00 B Asocies. b

Huettel, Song & McCarthy, 2004, Functional Magnetic Resonance Imaging
« standard error of the mean varies with square root of number of trials

« Number of trials needed will vary with effect size

 Function begins to asymptote around |5 trials



N
o
N
~
N~
~
o™

Effect of Adding Trials

Subject 1 Subject 2

F
I-I- 1'1'! b h
2 ! e X
Trials i '
averaged
4
16
36 , FIY. 10
H=
L %
64 e =
e 5
100 ¥ -
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144 | oy
'-'_'b":l'J o1

Huettel, Song & McCarthy, 2004, Functional Magnetic Resonance Imaging




Pros & Cons of Slow ER Designs
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Pros Example: Delayed Hand Actions
(Singhal et al., under revision)

- excellent estimation

Visual Delay Action
LOC

Response Execption
Objects >Scrambled
Y = -66

__-- ----- o TTX 4
Grasp Go (G) Action-
R related

artifact

- useful for studies with delay
periods

- very useful for designs with
motion artifacts (grasping,
swallowing, speech) because you
can tease out artifacts

T
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w
(m)
|
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16 24 32 40
Time (s)

ek
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- analysis is straightforward Really long delay. il
i

Cons =
. . R

e poor detection power because you get very few trials 2
per condition by spending most of your sampling Effect of this design =
power on estimating the baseline on our subject Q

>

|_

* subjects can get VERY bored and sleepy with long
inter-trial intervals
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- Yes, but we have to test assumptions
regarding linearity of BOLD signal first

Jitored ER A AMAAA AAA AAA AAAMAA AA AAAA

Design
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Linearity of BOLD response

A | Linearity:

#1 “Do things add up?”
g 34 red =2 - |
2.,
8
g 1]
;FT:' ________ N & - = . =3-2

-1 'I\_l_ [ T T T T T T T T T Y T

g 4 5 8 7 8 8 1011 12 13 14 15 16 17 18 19
5 TIME {SEC)
B Sync each trial response

L .
w to start of trial -
S ol gonuren
§ 1 z
E 1 ,'/ ,f_f'ﬁ(
§ ESTIMATED i ©
o SECOND TRIAL §

©)
>

4 5 8 7 B 9 1011 12 13 14 15 18 17 98 19
TIME (SET)

Source: Dale & Buckner, 1997




Rapid Jittered ER Design

A = trial of one type

(e.g., face image)

= trial of another type
(e.g., place image)

Rapid
storeder ——AAAA A AMA AAA AAAMAA AA AAAA o

Design

A popular choice is to use fjittered’ designs with inter-stimulus intervals of at least4s
and with exponentially decreasing delay frequencies up to 16s.
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BOLD Overlap With Regular Trial Spacing

01 A A

Neuronal activity from TWO event types with constant ITI

Partial tetanus BOLD activity from two event types

Slide from Matt Brown

3/7/2017
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BOLD Overlap with Jittering

LA RO AR

Neuronal activity from closely-spaced, jittered events

BOLD activity from closely-spaced, jittered events

Slide from Matt Brown
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Why jitter?

* Yields larger In signal

When pink is on, yellow is off Includes cases when both pink and yellow are off
—> pink and yellow are anticorrelated - less anticorrelation

- Without jittering predictors from different

trial types are strongly

* As we know, the GLM doesn’t do so well when
predictors are correlated (or anticorrelated)
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Rapid ER-FMRI with Randomized
Stimulus Presentation

2-5 5-5 10-s
intertrial interval intertrial interval intertrial interval

Left
hemifield
trials P <107
{u
A
[
B
Right 7 =
hernifield P < (.01 E
trials &

TMBIC 2016 &

Left <=—» Right Left <—> Right Left <— Right

Short randomized ITl enhances detection power.
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Variable vs. Fixed Intervals

Maximal —a— Variable interval

—®— Fixed interval

B

Relative etficiency

None
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0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Mean interval between stimuli (s)

After Dale (1999)
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Algorithms for Picking Efficient Designs

Genetic Algorithms

Retest modifications of efficient designs

Generate Build design Test fitness Select the most Crossover of
stimulus lists ‘:D makrices :D of designs ‘:D efficient designs ‘:D stimulus lists

A B C ‘n M A B C
1 3 1 35F A5E 3 1 I 1
2 4 2 3k L 3 4\ /2 || 29~ Eliminate
4 4 3 B dv41 3, . i
= Inefficient
1 1 2 A tA1li2
3 1 4 il I g 25 1/\3| 3! designs
5 3 4 0 - 3 i ¥ 9|a
z 9 g 3
i 1 3 ki g 4 1|3
- T | 5158 5 15K 2 &P il
3 1 3 C C 3 1|3, R
1 4 2 1E . 1E oy 1 4|2 Hs
: ‘% 1 1 11! Bt
i 2 3 05 05k 2 203 =
4 3 3 4 313 e
3 3 2 , b 3 32! s
L ; 1 ; b bl R
Dresigns Dresigns z

TMBIC 2016 &

http://wagerlab.colorado.edu/tools
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Pros & Cons of Applying Standard GLM to Rapid-ER Designs

Pros
- Acceptable detection power
- trials can be put in unpredictable order

- subjects don’t get so bored

Cons and Caveats
- reduced detection compared to block designs

- requires stronger assumptions about linearity
* BOLD is non-linear with inter-event intervals < 6 sec.
* Nonlinearity becomes severe under 2 sec.

il
Al
=
=
B
HA
=
\=
4
o
©
o
N
v
o
>
|_

» errors in HRF model can introduce errors in activation
estimates
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Good Practices in FMRI

- Evoke the cognitive processes of interest
- Maximize data collection from each subject
- Maximize sample size

- Choose conditions and timings that maximize evoked
changes in the process of interests

- Minimize correlation between BOLDs of successive
events

- Compute correlation between behavioral performance
and activation
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Images: Basic Terminology

Field of View (FOV)
(8.g. 192 mm)

Slice thickness

(e.g., 3 mm)

i

%

Matrix Size * E:%*
(e.g., 64 x 64) /‘ 3 mm =
i

In-plane resolution gmm T =
192 mm / 84 = 3 mm 2
Voxel Size z

A e

mEmincaags

Source: Lindquist & Tor (2015)
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Brain Dimensions and Terminology

L

Sagitta

e Coronal

| = Inferior
L=Left

R = Right
F = Posterior
A = Anterior

2 B{l
superior m

=

=

B

Z 5

=

R

Inferior :il

m

<100 ©

5

Posterior 8

o

>

l_

Anterion Right

X ’
Source: Lindquist & Tor (2015)




(1) Neuronal (3) Haemodynamic fMRI BOLD

[
activity response response =
(2) Neurovascular (4) Detection by =
Stimulus ) coupling - MRI scanner “
; —_—
. P %;* P Lk i
or modulation
in background
activity A T
Block Design Event-Related
Experimental os |
Stimulus Function | .
i Two-gamma function
s = 12 tﬂL_IB?LE_’SLt tr’.‘tg—l I.-TJJSEEE—,ng

' h(t) = T —c 1“: 10
Hemodynamic (ﬂ'lj (ﬂ'z) E‘é
Response . 4
Function =[ i
_ R
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Response 04 =




Overview of Preprocessing

Structural (T1)

Warping
parameters = space

Functional image
time series

|
:*:-a. !
A

- |
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Slice Time Problem

Not accounting for
the timing
differences between
slices may lead to
problematic time
course differences
between voxels on
— Slice | different slices.

— Slice 2
— Slice 8

0.5¢

fMRI response

L A 1 A 1 L A
0 2 4 6 8 10 12 14
Seconds after stimulus




More on Slice Time Correction

Space

IIIIII




Raw from the Last Slice

linear sinc Cubic spline




Raw Data from Middle Slice




Cubic Spline vs. sinc

Sinc Cubic

N spline /
A

l\. A
VA |

!

!
\\\.,i \1..__{'"

A /ﬂ\
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Reasons Not to Correct for Slice Time

Propagation of artifacts

With short TR and interleaved acquisition, slice-timing
problems is minimal
Particularly after spatial smoothing

Temporal derivatives absorbs the impacts




Spatial Transtormation

Volume-based transformations Surface-based registration
> Changes to 3D volume of data > Changes to surface data

A Square
r %
Rotaion Shearing Translaton Scaling

: é




Models for Spatial
Transtformations

Affine transformation

> Translation, rotation, scaling, shearing

> Rigid-body transformation

> No scaling and shearing

Piecewise linear transformation

> Divide the image into sub-regions and transform each of them respectively

Nonlinear transformation

> Transforming higher-dimensional representations of the image in a non-
linear fashion




Affine Transformations

Translation

-2

-1 0 1

Scaling

Rotation




Motion Correction
(Realignment)

Step 1: Estimate parameters Step 2: Reslice images

Original image Resliced image

0.004 0.939 0.149 -0.026
-0.192 0.155 1.005 -0.301

1.063 0.014 0.323 0.412
0 0 1




Plots of Estimated Head Motion

Before motion correction After motion correction
10 ' 10 ; '
—— X translation (mm) —— X translation (mm)
8 =Y translation (mm) gl - Y translation (mm)
——Z translation (mm) ——— Z lransiation (mm)
E E 6f
E E
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0 W
i rh -9 i i i
0 50 100 150 200 0 50 100 150 200
Timepoints Timepoints
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Methods to Prevent Head Motion




Spatial Smoothing

- Enhancing signal-to-noise ratio
* By averaged out variation at smaller scale

- Enhancing cross-individual overlap
- Sacrifice spatial resolution for power

- Fulfilling assumption of data analysis
* Gaussian random fields




Spatial Smoothing

Maximum

Half-Maximum

Gaussian kernel

Full Width at Half-Maximum

smooth each voxel by a
(FWHM)

Gaussian or normal function,
such that the nearest

neighboring voxels have the
strongest weighting

-8-76-5-4-3-2-101 2 3 456 7 8

1 | ‘_'_’

9(x) = o Q:TE

FWHM = 20+/2In(2)

FWHM =6




2D Spatial Smoothing

f(a.y) = Aexp (_ ((I - i:a)z L= ya)?')) |

202 207

+ FWHM?

_ 2
FWHM — \/ FWHM: 2

Intrinsic




Effect of Smoothing on Activation




Should you spatially smooth!?

- Advantages

* Increases Signal to Noise Ratio (SNR)

* Matched Filter Theorem: Maximum increase in SNR by filter with same
shape/size as signal

* Reduces number of comparisons
* Allows application of Gaussian Field Theory

* May improve comparisons across subjects
- Signal may be spread widely across cortex, due to inter-subject variability

- Disadvantages
* Reduces spatial resolution
* Challenging to smooth accurately if size/shape of signal is not known

Slide from Duke course



Recommendation for Smoothing

- Noise reduction
* Filter smaller than expected extent of activation

- Reducing structural variability
* Variability in the population
- Efficiency of normalization

- Gaussian random fields assumption
* FWHM twice the voxel size




Scaling

- Magnitude of BOLD fluctuation « baseline level

- Scaling time series of each voxel and for each run by the
mean of all TRs of that run

* Percentage
- Z-score

- For proper comparison of statistics between runs




Voxelwise Scaling
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Components of Time Course
Data

s
o
& + 8
\\ Low lrequency
fNoise’

\\
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| } \ ! Sigral of interesy
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Source: Smith chapter in Functional MRI: An Introduction to Methods



Linear Drift

1050

1040 §

)

fa—
=
L
=

1020

1010

= 1000

MR signal (arbitrary units

990

980

970

1 | 1 1
260y 51 101 151 201 251

Volumes within time series
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Spatial Normalization

- Process of spatially transforming data into a

common space for analysis
* Aka. Intersubject registration

-Necessary for integrating results from

multiple individuals
- generalization




Prestatistics Approach

- Compute the It level GLM for all subjects
* Preprocessing =2 GLM

- Spatial normalization of |5t level statistical
outputs




Approaches in Operation of
Spatial Normalization

1-step normalization 2-step normalization 3-step normalization

Anatomical Functional Anatomical Functional Anatomical Functional

.+~ Concatenated
transforms

' Concatenated

T1-weighted  Echoplanar T1-weighted transforms

template template template

Coplanar image

T1-weighted
template




Atlas and Templates

- Atlas

* Providing a guide to the location of anatomical features in a
coordinate space

* E.g., Talairach atlas

- Template
* An image representative of the atlas

* Providing a target where individual image can be aligned
- E.g.,, MNI305, ICBM-152, ... etc




Talairac

Talairach Client o ] 4

File Edit Help

Database Search Options
) Single Point @ Nearest Gray Matter _) Cube Range I:D

Coordinates

& Single Coordinate Search:

i
:
i

7 From file: [] Show Results
Input: <no file selected>
QOutput: <no file selected>

Welcome to the Talairach Client.

Gray Matter nearestto (0, 0, O):
Right Cerebrum, Limbic Lobe, Anterior Cingulate, Gray Matter, Brodmann area 25, Range=4




Spatial Normalization Methods

- Landmark-based
* E.g., Talaraich Landmarks

* Anterior and posterior commisures, midline sagittal plane, and the exterior boundaries of the brain in
each direction

- Volume-based

- Surface-based




Landmark Based

Talairach landmarks Talairach bounding box

Pﬁﬁtﬂ rior B

Commissure 4
-~ /'

v : el W
. AN Edge of PC

Superior Antériﬂr Posterior Cerebral Y i
Edge of AC  Commissure Margin of AC Aqueduct Sl




Surface based

- Extraction of cortical surface

- Registration to surface atlas
* More accurate registration of cortical features
* Not ready for subcortical structures yet
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Summary

Structural (T1)

Warping

Functional image
time series
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Questions!



Matrix Expression of GLM Y= X.B +¢
- Write out equation for each observation of variable Y from | to J:
Y, =X, B, ..+ X B+ X BT g
Y= X By o AX B+ X Byt

Can turn these simultaneous equations into matrix form to get a single
equation:

Y. (X Xy Xy ) | By £
Yi | = Xig e Xy X1 gj g

L YJ/ lel " Xll " Xle _ J/ _ E\] Y,
Y = X s B + ¢

Observed data Design Matrix Parameters Residuals/Error

3/7/2017

B

R
)

I\

=
=
B
HA
=
\=
4
o
©
o
N
)
o
>
|_




3/7/2017

Solution to the Equation

_ A2 "
X'Y =X'Xgp 0" = T=00T)

Any B satisfies the normal equation minimizes the sum of the
squares of residuals (e’e)

B=XX)"'XY

N

Assuming this is invertible
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Hypothesis Testing: Contrast t-test

cB ~ N(0,c(X'X)" 1c/a?)

f— Cﬁ Hjy : Cﬂ > ()
JeX'X)~1c'62 P(TT—(p+1) = t)
HA . C 0 %
df T —(p+1) e

P(Tr—(p+1) = 1)
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cB
JeX'X)—1¢/62

Bl

Design matrix & Contrast Vector;
depending on your experimental
design

Residual error unaccounted for
by your design; depending on
the quality of data
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