TMBIC 2017 資料分析助理研習營

FMRI實驗設計與資料前處理

FMRI Experimental Designs and Data Preprocessing

張智宏副教授 中央大學認知神經科學研究所

參考書籍

Principles of fMRI

Martin A. Lindquist, Ph.D.

Tor D. Wager, Ph.D.

Handbook of

FUNCTIONAL

Data Analysis

http://www.fmri-data-analysis.org

FUNCTIONAL Magnetic Resonance Imaging

Third Edition

Scott A. Huettel • Allen W. Song • Gregory McCarthy

The Big Picture

實驗基本概念

- •受控制的觀察
 - ·獨變項 (Independent Variables; IV)
 - •由研究者操弄
 - 至少兩個水準
 - •例:運動強度、心理壓力程度、圖形額色、圖形類別

- •依變項(Dependent Variables, DV)
 - •量化指標
 - 可受獨變項影響而改變
 - ·例:心跳、壓力荷爾蒙、 反應時間、BOLD

關於FMRI,我們觀察的是...

- Blocks
- Conditions

FMRI Time Series

IV and DV from the Perspective of Data Analysis

- Observed BOLD signal (example)

- BOLD signal did not look exactly like the predicted neural activity (in red)

General Linear Model

Data matrix

Υ

fMRI data

n rows (time points) by V columns (voxels) Design matrix

G

=

n rows
(time points) by
M columns (regressors)

Parameter matrix

β

 \times

+

+

V rows (voxels) by M columns (parameter weights) Error matrix

 ε

n rows (time points) by V columns (voxels)

FMRI Experimental Designs

Blocked designs

Event-related designs

Mixed designs

Detection vs. Estimation

- Detection: determination of whether activity of a given voxel (or region) changes in response to the experimental manipulation
- "which voxel?"

- Estimation: measurement of the time course within an active voxel in response to the experimental manipulation
- "How does signal change in a voxel?"

Block Designs

Early Assumption: Because the hemodynamic response delays and blurs the response to activation, the temporal resolution of FMRI is limited.

Effect of Block Interval on FMRI HRF

Recommendations for Using Blocked Design

- Length of a block
 - Minimally 10s and optimally 16s (Liu, 2004).
 - Equivalent for conditions or combination of conditions to be compared

 Evoking the same mental process throughout a block

Event-related Designs

Slow Event-Related Designs

Periodic (Slow) ER Design

- Fixed and long ISI
 - Usually > 15s
 - Each event evokes a complete HR, and corresponding BOLD are selectively averaged.
 - Inefficient

Effects of ISI on ER-FMRI Activation

Slow Event-Related Design: Constant ITI

Bandettini et al. (2000)
What is the <u>optimal trial spacing</u> (duration + intertrial interval, ITI) for a Spaced Mixed Trial design with constant stimulus duration?

Event-related average

Source: Bandettini et al., 2000

Optimal Constant ITI

- Brief (< 2 sec) stimuli:
 - optimal trial spacing = 12 sec

- For longer stimuli:
 - optimal trial spacing = 8 + 2*stimulus duration
- Effective loss in power of event related design:
 - · = -35%
 - i.e., for 6 minutes of block design, run ~9 min ER design

Trial to Trial Variability

Huettel, Song & McCarthy, 2004, Functional Magnetic Resonance Imaging

How Many Trials Do You Need?

Huettel, Song & McCarthy, 2004, Functional Magnetic Resonance Imaging

- standard error of the mean varies with square root of number of trials
- Number of trials needed will vary with effect size
- Function begins to asymptote around 15 trials

Effect of Adding Trials

Pros & Cons of Slow ER Designs

Pros

- excellent estimation
- useful for studies with delay periods
- very useful for designs with motion artifacts (grasping, swallowing, speech) because you can tease out artifacts
- analysis is straightforward

Example: Delayed Hand Actions (Singhal et al., under revision)

Cons

- poor detection power because you get very few trials per condition by spending most of your sampling power on estimating the baseline
- subjects can get VERY bored and sleepy with long inter-trial intervals

要不要再快一點?

 Yes, but we have to test assumptions regarding linearity of BOLD signal first

Rapid Jittered ER Design

Linearity of BOLD response

Linearity: "Do things add up?"

$$red = 2 - 1$$

Sync each trial response to start of trial

Not quite linear but good enough!

Source: Dale & Buckner, 1997

Rapid Jittered ER Design

A popular choice is to use 'jittered' designs with inter-stimulus intervals of at least4s and with exponentially decreasing delay frequencies up to 16s.

BOLD Overlap With Regular Trial Spacing

Neuronal activity from **TWO** event types with constant ITI

Partial tetanus BOLD activity from two event types

BOLD Overlap with Jittering

Neuronal activity from closely-spaced, jittered events

BOLD activity from closely-spaced, jittered events

Why jitter?

Yields larger fluctuations in signal

When pink is on, yellow is off

→ pink and yellow are anticorrelated

Includes cases when both pink and yellow are off

→ less anticorrelation

- Without jittering predictors from different trial types are strongly anticorrelated
 - As we know, the GLM doesn't do so well when predictors are correlated (or anticorrelated)

Rapid ER-FMRI with Randomized Stimulus Presentation

Short randomized ITI enhances detection power.

Variable vs. Fixed Intervals

Algorithms for Picking Efficient Designs

Genetic Algorithms

Pros & Cons of Applying Standard GLM to Rapid-ER Designs

Pros

- Acceptable detection power
- trials can be put in unpredictable order
- subjects don't get so bored

Cons and Caveats

- reduced detection compared to block designs
- requires stronger assumptions about linearity
 - BOLD is non-linear with inter-event intervals < 6 sec.
 - Nonlinearity becomes severe under 2 sec.
- errors in HRF model can introduce errors in activation estimates

Good Practices in FMRI

- Evoke the cognitive processes of interest
- Maximize data collection from each subject
- Maximize sample size
- Choose conditions and timings that maximize evoked changes in the process of interests
- Minimize correlation between BOLDs of successive events
- Compute correlation between behavioral performance and activation

腦造影 vs. 腦照影

FMRI資料前處理

Preprocessing

Images: Basic Terminology

Field of View (FOV) (e.g. 192 mm)

Slice thickness (e.g., 3 mm)

Matrix Size (e.g., 64 x 64)

In-plane resolution 192 mm / 64 = 3 mm

Source: Lindquist & Tor (2015)

Brain Dimensions and Terminology

Two-gamma function

$$h(t) = \frac{t^{\alpha_1 - 1} \beta_1^{\alpha_1} e^{-\beta_1 t}}{\Gamma(\alpha_1)} - c \frac{t^{\alpha_2 - 1} \beta_2^{\alpha_2} e^{-\beta_2 t}}{\Gamma(\alpha_2)}$$

Overview of Preprocessing

Structural (T1)

Slice Time Problem

Not accounting for the timing differences between slices may lead to problematic time course differences between voxels on different slices.

More on Slice Time Correction

Raw from the Last Slice

Raw Data from Middle Slice

Cubic Spline vs. sinc

Reasons Not to Correct for Slice Time

Propagation of artifacts

With short TR and interleaved acquisition, slice-timing problems is minimal

Particularly after spatial smoothing

Temporal derivatives absorbs the impacts

Spatial Transformation

Volume-based transformations

Changes to 3D volume of data

Surface-based registration

Changes to surface data

Models for Spatial Transformations

Affine transformation

- Translation, rotation, scaling, shearing
- Rigid-body transformation
 - No scaling and shearing

Piecewise linear transformation

Divide the image into sub-regions and transform each of them respectively

Nonlinear transformation

 Transforming higher-dimensional representations of the image in a nonlinear fashion

Affine Transformations

Motion Correction (Realignment)

Plots of Estimated Head Motion

Methods to Prevent Head Motion

Spatial Smoothing

- Enhancing signal-to-noise ratio
 - By averaged out variation at smaller scale
- Enhancing cross-individual overlap
 - Sacrifice spatial resolution for power
- Fulfilling assumption of data analysis
 - Gaussian random fields

Spatial Smoothing

Gaussian kernel

smooth each voxel by a Gaussian or normal function, such that the nearest neighboring voxels have the strongest weighting

Half-Maximum Full Width at Half-Maximum (FWHM) -8 -7 -6 -5 -4 -3 -2 -1 0 FWHM = 6

Maximum

$$g(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}.$$

$$FWHM = 2\sigma\sqrt{2\ln(2)}$$

2D Spatial Smoothing

$$f(x,y) = A \exp\left(-\left(\frac{(x-x_o)^2}{2\sigma_x^2} + \frac{(y-y_o)^2}{2\sigma_y^2}\right)\right).$$

$$FWHM = \sqrt{FWHM_{intrinsic}^2 + FWHM_{applied}^2}$$

Effect of Smoothing on Activation

Should you spatially smooth?

Advantages

- Increases Signal to Noise Ratio (SNR)
 - Matched Filter Theorem: Maximum increase in SNR by filter with same shape/size as signal
- Reduces number of comparisons
 - Allows application of Gaussian Field Theory
- May improve comparisons across subjects
 - Signal may be spread widely across cortex, due to inter-subject variability

 Why would you spend \$4 million to

 buy an MRI scanner and then blur the

 data till it looked like PET?"

-- Ravi Menon

Disadvantages

- Reduces spatial resolution
- Challenging to smooth accurately if size/shape of signal is not known

Recommendation for Smoothing

- Noise reduction
 - Filter smaller than expected extent of activation
- Reducing structural variability
 - Variability in the population
 - Efficiency of normalization
- Gaussian random fields assumption
 - FWHM twice the voxel size

Scaling

- Scaling time series of each voxel and for each run by the mean of all TRs of that run
 - Percentage
 - Z-score
- For proper comparison of statistics between runs

Voxelwise Scaling

Components of Time Course Data

Linear Drift

FUNCTIONAL MAGNETIC RESONANCE IMAGING, Figure 9.7 © 2004 Sinsuer Associates, Inc.

Spatial Normalization

- Process of spatially transforming data into a common space for analysis
 - Aka. Intersubject registration
- Necessary for integrating results from multiple individuals
 - generalization

Prestatistics Approach

- Compute the Ist level GLM for all subjects
 - Preprocessing → GLM

• Spatial normalization of Ist level statistical outputs

Approaches in Operation of Spatial Normalization

Atlas and Templates

Atlas

- Providing a guide to the location of anatomical features in a coordinate space
- E.g., Talairach atlas

Template

- An image representative of the atlas
- Providing a target where individual image can be aligned
- E.g., MNI305, ICBM-152, ... etc

Talairach Atlas

Spatial Normalization Methods

- Landmark-based
 - E.g., Talaraich Landmarks
 - Anterior and posterior commisures, midline sagittal plane, and the exterior boundaries of the brain in each direction
- Volume-based

Surface-based

Landmark Based

Surface based

Extraction of cortical surface

- Registration to surface atlas
 - More accurate registration of cortical features
 - Not ready for subcortical structures yet

Summary

Structural (T1)

Questions?

Matrix Expression of GLM

$$Y = X \cdot \beta + \varepsilon$$

Write out equation for each observation of variable Y from 1 to J:

$$Y_{1} = X_{11}\beta_{1} + ... + X_{1l}\beta_{l} + ... + X_{1L}\beta_{L} + \epsilon_{1}$$

$$Y_{j} = X_{j1}\beta_{1} + ... + X_{jl}\beta_{l} + ... + X_{jL}\beta_{L} + \epsilon_{j}$$

$$Y_{j} = X_{j1}\beta_{1} + ... + X_{jl}\beta_{l} + ... + X_{jL}\beta_{L} + \epsilon_{j}$$

Can turn these simultaneous equations into matrix form to get a single equation:

Observed data

Design Matrix

Parameters

Residuals/Error

Solution to the Equation

$$X'Y = X'X\beta$$

$$\hat{\sigma}^2 = \frac{\mathbf{e}'\mathbf{e}}{T - (p+1)}$$

Any β satisfies the normal equation minimizes the sum of the squares of residuals (e'e)

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$$

Assuming this is invertible

Hypothesis Testing: Contrast t-test

$$\mathbf{c}\hat{\boldsymbol{\beta}} \sim N(0, \mathbf{c}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{c}'\sigma^2)$$

$$t = \frac{c\hat{\beta}}{\sqrt{c(X'X)^{-1}c'\hat{\sigma}^2}} \qquad H_A: c\beta > 0$$
$$P(T_{T-(p+1)} \ge t)$$

df:
$$T - (p + 1)$$

$$H_A : \mathbf{c}\boldsymbol{\beta} \neq 0$$

$$P(T_{T-(p+1)} \geq |t|)$$

Design matrix & Contrast Vector; depending on your experimental design

Residual error unaccounted for by your design; depending on the quality of data